

# **АЛЬБОМ**

технических решений системы навесных вентилируемых фасадов СИАЛ П-Т-К-Км

КРАСНОЯРСК 2015

### СОДЕРЖАНИЕ

- 1. ОПИСАНИЕ СИСТЕМЫ
- 2. ОБЩАЯ СПЕЦИФИКАЦИЯ ЭЛЕМЕНТОВ , ИЗДЕЛИЙ И ДЕТАЛЕЙ КОНСТРУКЦИИ НАВЕСНОЙ ФАСАДНОЙ СИСТЕМЫ "СИАЛ П-Т-К-Км"
- 3. АЛЮМИНИЕВЫЕ ДЕТАЛИ НАВЕСНОЙ ФАСАДНОЙ СИСТЕМЫ "СИАЛ П-Т-К-Км"
- 4. СТАЛЬНЫЕ ДЕТАЛИ ДЛЯ КРЕПЛЕНИЯ КЕРАМОГРАНИТНЫХ ПЛИТ НАВЕСНОЙ ФАСАДНОЙ СИСТЕМЫ "СИАЛ П-Т-К-Км"
- 5. КОНСТРУКТИВНЫЕ РЕШЕНИЯ НАВЕСНОЙ ФАСАДНОЙ СИ ТЕМЫ "СИАЛ П-Т-К-Км"
- 6. ВАРИАНТЫ УСТАНОВКИ СТАЛЬНЫХ ГОРИ ОНТ ЛЬНЫХ ПРОТИВОПОЖАРНЫХ ОТСЕЧЕК
- 7. РАСЧЕТЫ
- 8. ГЕОМЕТРИЧЕСКИЕ ХАРА ЕРИСТИКИ
- 9. ПРИЛОЖЕНИЕ 1 Письмо ФГУ "ФЦС



#### СНВФ "СИАЛ"

### Основные положения установки СНВФ.

Системы навесных вентилируемых фасадов (СНВФ) являются по своим физико-строительным параметрам наиболее эффективными многослойными системами. Соблюдение технических решений, разработанных для установки СНВФ "СИАЛ", позволяет максимально увеличить эксплуатационный ресурс здания, исключить затраты на ремонт и техническое обслуживание фасада.

### Особенности СНВФ:

- за счет разделения функции облицовки, утеплителя и несущей конструкции достигается полная защита здания от неблагоприятных погодных факторов;
- точка росы выносится за пределы несущих стен, влага, прон кающая из стен в утеплитель, быстро и без остатка отводится циркулир ющим воздушным потоком;
- температурные нагрузки несущих стен почти полн тью сключ ны, потери тепла зимой, а также перегрев летом значител но сн жают

### Преимущества СНВФ "СИАЛ":

- быстрый монтаж без предварительного ремонта стар й стены ;
- отсутствие мокрых процессов, что дает возможн сть проводить монтажные работы в любое время года;
- возможность произвести локал ный ремонт б стро, с минимальными затратами устранять последствия ва да зма, ав рий и т.п.;
- классификация по огне ойко ти о асно российским стандартам позволяет использовать С ВФ "СИА , соблюдая все нормы пожарной безопасности, в том числе на хим ческих заводах, автозаправочных станциях, аэропортах, железн дорожных вокзалах и других городских объектах;
- отсутствие р онанса и способность ослаблять вибрацию позволяет не примен допол тел ной шумоизоляции ;
- возм жно при ести здание в соответствие новым строительным нормам по нер ос режению (СНиП).

Монтажн е работы по установке СНВФ "СИАЛ" не представляют сложности для подготовленных специалистов .

Монтаж СНВФ "СИАЛ" необходимо проводить в соответствии с инструкцией по монтажу и эксплуатации навесных вентилируемых фасадов систем "СИАЛ" ИМЭ.00.02.2013.

Специалисты ООО "СИАЛМЕТ" осуществляют:

- проектирование;
- квалифицированный монтаж;
- шеф-монтаж;
- стажировку инженеров и монтажников других организаций на своих строящихся объектах.

| J | Ш | И | $\overline{C}$ | <u> </u> |
|---|---|---|----------------|----------|
|   | 1 |   | 1              |          |

- 1.1 Конструкция системы "СИАЛ П-Т-К-Км" предназначена для устройства облицовки фасадов зданий и других строительных сооружений керамогранитными плитами с видимым креплением и утеплением стен с наружной стороны в соответствии с требованиями норм по тепловой защите зданий.
- 1.2 Конструкция состоит из несущих элементов каркаса прессованных профилей из алюминиевых сплавов по ГОСТ 22233-2001, утеплителя, крепежных изделий и облицовочных плит.

Основные несущие элементы каркаса П-образные кронштейны, устанавливаемые на строительном основании (стене) с помощью анкерных дюбелей или анкеров, а также в ртикальные направляющие, к которым крепятся керамогранитные плиты. Необходимый вылет вертикальных направля щих т стены обеспечивают кронштейны и удлинители кр нштейн в.

При наличии требований по теплоизо яции на строительном основании (стене) устанавливают теплои оляци нные изделия (минераловатные плиты), закреп яемые с по ощью тарельчатых дюбелей.

При необходимости на внеш ей поверхности СЛОЯ теплоизоляции ПЛОТНО за епляю С ПОМОЩЬЮ тех же тарельчатых дюбелей за итную паропроницаемую мембрану. Наличие боль инства паропроницаемых мембран предусматривает у ановку на фасаде здания стальных горизонтальных проти опожарных отсечек, толщиной не менее 0,55 мм, д я защиты от падающих горящих капель мембраны .

К епежные элементы, используемые в системе: заклепки, анк ра, арел чатые дюбели, винты самонарезающие.

К рамогранитные плиты крепят к несущим вертикальным направляющим с помощью стальных кляммеров .

Система "СИАЛ П-Т-К-Км" содержит детали примыкания к проемам, углам, цоколю, крыше и другим участкам зданий.

- 1.2.1 Несущие элементы каркаса:
- система навешивается на строительное основание (стену) с помощью П образных опорных и несущих кронштейнов, для межэтажного крепления системы, только к плитам перекрытий, применяются спаренные и усиленные кронштейны. При обычном креплении к стенам здания система предусматривает жесткое крепление вертикальных направляющих к несущим кронштейнам

для фиксации их по высоте, а подвижное крепление к опорным кронштейнам производится через салазки, что обеспечивает компенсацию температурных деформаций направляющих и неровностей по вертикали плоскости основания.

Каждый несущий и опорный кронштейн удерживается на основании одним анкером; между основанием (стеной) и примыкающим к стене участком кронштейна устанавливается термоизолирующая прокладка из полиамида или паронита.

- вертикальные направляющие крепятся к кронштейнам через большие, малые и увеличенные салазки с помощью заклепок .
  - 1.2.2. Теплоизолирующий слой:
- в системе применяют однослойное или двух лойное утепление.
- толщина теплоизолирующего слоя оп еделя тся теплотехническим расчетом конструкции стенов г ограждения в проекте на строительство сооружения в соот етствии со СНиП 23-02-2003.
- на поверхности утеплителя, есл это требу тся расчетом, плотно крепится гидроветрозащитная паропроницаемая мембрана; решение о применении (или не пр менении) мембраны принимают проектная организа ия заказ ик системы в каждом конкретном случае с учето множест а акторов; при применении кэшированных теплоизоляционны плит дополнительное применение гидроветрозащ тной паропроницаемой мембраны не допускается.
  - 1.2.3 Облицо очные плиты.

В каче тве обл цовки в системе применяют керамогранитные плиты, ко ор е кре т к вертикальным направляющим с применением ех ологической оснастки - стальных кляммеров (КмР, КмТ, мБ и КмК). Стальные кляммеры окрашевают под цвет облицовки.

Кляммеры к направляющим крепят стальными заклепками со стальными штифтами. Крепление кляммера менее чем на 2 заклепки не допускается.

Монтаж плит начинают по второму ряду от угла здания (если в проекте не указано иначе). Небольшой перекос и наклон стен здания можно компенсировать, срезав самые крайние плиты в требуемую форму. Вертикальный вентиляционный зазор между плитами выдерживают не менее 6...10 мм.

Плиты складируются в штабелях на горизонтальном основании

<u>Лист</u> 1.3 и защищаются от влаги и пыли. Перед монтажом плиты должны находиться в таких условиях влажности, которые соответствуют их будущим эксплуатационным условиям. Во избежании повреждения лицевой поверхности плит даже при кратковременном складировании необходимо обязательное применение полиэтиленовых прокладок между плитами.

1.2.4 Крепежные элементы.

Стандартные крепежные элементы - заклепки, анкера, дюбели, винты самонарезающие и тарельчатые дюбели, применяемые в системе "СИАЛ П-Т-К-Км", должны иметь документы (ТО, ТС и т.д.), подтверждающие пригодность их применения в строительстве.

1.3 Собранные и закрепленные в соответсвии с п оектом на (сооружения) конструкции бразуют здания навесную фасадную систему с воздушным 3 30po между керамо ани ных внутренней поверхностью плит основан ем ри теплоизоляционным слоем ИЛИ отсутствии утеплителя. Воздушный зазор беспечивае удаление влаги и необходимый температурн влажностный режим В теплоизоляционном слое

Указанные в альбоме р зм ры масса и периметры профилей являются теорети скими могут изменяться в зависимости от допусков на р меры профилей. Массоинерционные характеристики проф лей, необходимые для прочностных расчетов, риведены в данном альбоме.

ООО "СИАЛМЕТ" оставляет за собой право вносить изменения и дополнения, связанные с дальнейшим развитием и постоянным повышением технического уровня системы. Все права на настоящую публикацию и материалы данного альбома принадлежат разработчику системы.

Система профилей СИАЛ продолжает совершенствоваться и развиваться.

ВОРОШИЛОВ Сергей Федорович Генеральный конструктор систе "СИАЛ"



2. ОБЩАЯ СПЕЦИФИКАЦИЯ ЭЛЕМЕНТОВ, ИЗДЕЛИЙ И ДЕТА ЕЙ КОНСТРУКЦИИ НАВЕСНОЙ ФАСАДНОЙ СИСТЕМЫ "СИАЛ П-Т К-Км" Лист СИАЛ Навесная фасадная система 2

## ОБЛИЦОВОЧНЫЕ МАТЕРИАЛЫ

| Эскиз<br>элемента |                                                   | Наименование<br>(марка)                   | Масса,<br>кг/м²<br>(справочно) | Материал                                                   | Производитель                                   | нд                     |
|-------------------|---------------------------------------------------|-------------------------------------------|--------------------------------|------------------------------------------------------------|-------------------------------------------------|------------------------|
|                   |                                                   | Пиастрелла                                |                                |                                                            | ЗАО "Компания<br>"Пиастрелла",<br>Россия        |                        |
|                   |                                                   | ITALON                                    |                                |                                                            | ЗАО<br>"Керамогранитный<br>завод",<br>Россия    |                        |
|                   |                                                   | Керамин                                   |                                |                                                            | ООО "Керамин",<br>Бела усь                      |                        |
|                   | _a                                                | IRIS MARMI E<br>GRANITI                   |                                | кцию                                                       | "IRIS ERAMICA<br>"<br>Итали                     | ro TC                  |
|                   | итная пли                                         | MIRAGE  MIRAGE  CASALGR DE PADANA  PADANA | 24                             | odu                                                        | MIRAGE Granito<br>Ceramico S. p. A.",<br>Италия | сно действительного ТС |
| ерамограни        |                                                   | 24                                        | ласно ТО н                     | "CERAMICA<br>CASALGRANDE<br>PADANA S. p. A.",<br>Италия    | асно дейс                                       |                        |
|                   |                                                   |                                           | Согл                           | "DEUTSCHE<br>STEINZEUG Cremer<br>& Breuer AG",<br>Германия | Согла                                           |                        |
|                   | "HITOM" торговой марки "Apex" "Stargres Ceramics" |                                           |                                | "TaiShan Hitom<br>Ceramics Co., Ltd",<br>Китай             |                                                 |                        |
|                   | Fiarano                                           |                                           |                                | "Guangdong Huiya<br>Ceramics Co., Ltd",<br>Китай           |                                                 |                        |
|                   | Sal<br>Sapiente                                   |                                           |                                | "GUANGDONG<br>DONGPENG<br>CERAMIC Co., Ltd",<br>Китай      |                                                 |                        |

Лист

2.1 CNAJ

## АЛЮМИНИЕВЫЕ КОМПЛЕКТУЮЩИЕ

| Эскиз<br>элемента | Обозначение | Наименование                            | Масса,<br>кг/п.м. | Материал                             | Производитель    | нд              |
|-------------------|-------------|-----------------------------------------|-------------------|--------------------------------------|------------------|-----------------|
|                   | КП45480-1   | Направляющая<br>вертикальная            | 0,947             |                                      |                  |                 |
|                   | КП451362    | Направляющая<br>вертикальная            | 1,221             |                                      |                  |                 |
|                   | КПС 010     | Направляющая<br>вертикальная            | 1,61              | 9                                    |                  |                 |
|                   | КПС 163     | Направляющая<br>вертикальная            | 1,165             | ,78 6063                             |                  |                 |
|                   | КПС 245     | Направляющая<br>верти ая                | 1,881             | ree, AlMgo                           | 000 "ЛПЗ "Сегал" | 233-2001        |
|                   | КПС 246     | На авляю ая<br>ертикальн я              | 2,098             | АД31 Т1, AIMgSi (6060) Т66, AIMg0,7S | ПП" 000          | FOCT 22233-2001 |
|                   | KПС 6 5     | Направляющая<br>вертикальная            | 1,267             | 31 T1, AIMę                          |                  |                 |
|                   | КПС 707     | Направляющая<br>вертикальная            | 1,394             | Ą                                    |                  |                 |
|                   | КПС 910     | Направляющая<br>горизонтальная          | 0,547             |                                      |                  |                 |
|                   | КПС 911     | Направляющая<br>вертикальная<br>угловая | 0,864             |                                      |                  |                 |

СИАЛ Навесная фасадная система

Лист 2.2

| Эскиз<br>элемента | Обозначение                                                                                                                        | Наименование                                                                | Масса,<br>кг/п.м.                                                                                                                                 | Материал         | Производитель    | нд              |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------------|
|                   | K∏C 579                                                                                                                            | Закладная<br>соединительная<br>(для направляющих<br>КП45480-1 и<br>КПС 707) | 0,69                                                                                                                                              |                  |                  |                 |
|                   | КН-60-КПС 254<br>КН-90-КП45469-1<br>КН-125-КПС 255<br>КН-160-КП45432-2<br>КН-180-КПС 256<br>КН-205-КП45463-2                       | Кронштейн<br>несущий                                                        | 1,092 (0,102 к-т)<br>1,444 (0,129 к-т)<br>1,825 (0,167 к-т)<br>2,399 (0,224 к-т)<br>2,723 (0,257 к-т)<br>3,13 (0,297 к-т)                         |                  |                  |                 |
|                   | КН-240-КПС 705  КО-60-КПС 254  КО-90-КП45469-1  КО-125-КПС 255  КО-160-КП45432-2  КО-180-КПС 256  КО-205-КП45463-2  КО-240-КПС 705 | Кронштейн<br>опорный                                                        | 3,698 (0,354 к-т)  1,092 (0,063 к-т)  1,444 (0,079 к-т)  1,825 (0,102 к-т)  2,399 (0,136 к-т)  2,723 (0,156 к-т)  3,13 (0,18 к-т)  3,698 (0,214 к | g0,7Si (6063) T6 | ""               | )               |
|                   | КС-90-КП45469-1<br>КС-125-КПС 255<br>КС-160-КП45432-2<br>КС-180-КПС 256<br>КС-205-КП45463-2<br>КС-240-КПС 705                      | сп енный                                                                    | 1 4 (0,192 к-т)<br>5 (0 к-т)<br>2,3 (0 3 к т)<br>2,72 ,387 к-т)<br>3,13 ( ,481 к-т)<br>3,698 (0,533 к-т)                                          | ySi (6060) T6 A  | 000 "ЛПЗ "Сегал" | FOCT 22233-2001 |
|                   | КУ-160 С 249<br>КУ-205-КП 76<br>0-КПС 70                                                                                           | Кронштейн<br>иленный                                                        | 5,041 (0,745 к-т)<br>6,474 (0,892 к-т)<br>7,205 (1,034 к-т)                                                                                       | АД31 T1, AIMgSi  |                  |                 |
|                   | УКН-180<br>КП45449-1                                                                                                               | Удлинитель<br>кронштейна<br>несущего                                        | 2,55<br>(0,238 к-т)                                                                                                                               | ₽                |                  |                 |
|                   | УКО-180<br>КП45449-1                                                                                                               | Удлинитель<br>кронштейна<br>опорного                                        | 2,55<br>(0,14 к-т)                                                                                                                                |                  |                  |                 |
|                   | УКС-180<br>КП45449-1                                                                                                               | Удлинитель<br>кронштейна<br>спаренного                                      | 2,55<br>(0,349 к-т)                                                                                                                               |                  |                  |                 |

Лист

2.3 CИAJ

| Эскиз<br>элемента | Обозначение        | Наименование                           | Масса,<br>кг/п.м.    | Материал             | Производитель   | НД              |
|-------------------|--------------------|----------------------------------------|----------------------|----------------------|-----------------|-----------------|
|                   | УКУ-180<br>КПС 580 | Удлинитель<br>кронштейна<br>усиленного | 3,704<br>(0,513 к-т) |                      |                 |                 |
|                   | СБ-КП45461         | Салазка<br>большая                     | 0,485<br>(0,048 к-т) |                      |                 |                 |
|                   | СБ-КПС 257         | Салазка<br>большая                     | 0,459<br>(0,045 к-т) | 16                   |                 |                 |
|                   | СБ-КПС 581         | Салазка<br>большая                     | 0,98<br>(0,098 к-т)  | ,78 6063             |                 |                 |
|                   | СМ-КП45461         | Салазка<br>ма                          | (0,029 к-т)          | (6060) T66, AIMg0,7S | 00 "ЛПЗ "Сегал" | TOCT 22233-2001 |
|                   | СМ-КПС 25          | лазка<br>малая                         | 0,459<br>(0,027 к-т) | ·—                   | ПП" 000         | FOCT 22         |
|                   | М-КПС 581          | Салазка<br>малая                       | 0,98<br>(0,059 к-т)  | АД31 Т1, AIMgS       |                 |                 |
|                   | СУ-КП45461         | Салазка<br>увеличенная                 | 0,485<br>(0,072 к-т) | AД                   |                 |                 |
|                   | СУ-КПС 257         | Салазка<br>увеличенная                 | 0,459<br>(0,068 к-т) |                      |                 |                 |
|                   | СУ-КПС 581         | Салазка<br>увеличенная                 | 0,98<br>(0,147 к-т)  |                      |                 |                 |

СИАЛ Навесная фасадная система

Лист 2.4

| Эскиз<br>элемента | Обозначение       | Наименование          | Масса,<br>кг/п.м.    | Материал                  | Производитель    | нд              |
|-------------------|-------------------|-----------------------|----------------------|---------------------------|------------------|-----------------|
|                   | ШФ-8<br>ПК 801-2  | Шайба<br>фиксирующая  | 0,241<br>(0,006 к-т) |                           |                  |                 |
| 0                 | ШФ-10<br>ПК 801-2 | Шайба<br>фиксирующая  | 0,241<br>(0,006 к-т) |                           |                  |                 |
|                   | КПС 033           | Труба                 | 1,537                | 16<br>T6                  |                  |                 |
|                   | КПС 568           | Держатель<br>откоса   | 0,192                | g0,7Si (6063) T6          |                  |                 |
|                   | КП45437           | Держатель<br>откоса ( | 0,216                | ∢                         | 000 "ЛПЗ "Сегал" | FOCT 22233-2001 |
|                   | 07/0009           | У ок<br>30х3          | 315                  | gsi (6060)                | ПП" 000          | FOCT 22         |
|                   | S08/00            | Уголок<br>40x20x1,5   | 0,238                | АДЗ1 Т1, AIMgSi (6060) Т6 |                  |                 |
|                   | Шина<br>5x80      | Шина                  | 1,081                | ₩<br>TV                   |                  |                 |
|                   |                   |                       |                      |                           |                  |                 |
|                   |                   |                       |                      |                           |                  |                 |

Лист 2.5

### КОМПЛЕКТУЮЩИЕ

| Эскиз<br>элемента | Обозначение | Наименование                            | Масса,<br>кг                                        | Материал                                                           | Производитель                                            | нд                                    |  |
|-------------------|-------------|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|--|
|                   |             | Подкладка                               | шт. 0,03                                            | Полиамид<br>ПА6-Л-СВ30                                             | ООО "ДАК",<br>г. Красноярск                              | ТУ РБ 5000<br>48054.020<br>-2001      |  |
|                   | ПКО-55-60   | под<br>кронштейн<br>опорный,<br>опорный | шт. 0,03                                            | Полиамид<br>ПА6-210/311                                            | ООО<br>"Метафракс",<br>г. Губаха                         | OCT6-06-<br>C9-93                     |  |
|                   |             | угловой                                 |                                                     | Паронит<br>ПОН                                                     |                                                          | ГОСТ<br>481-80                        |  |
|                   | ПК-55-150   | Подкладка                               | шт. 0,063                                           | Полиамид<br>ПА6-Л-СВ30                                             | ООО "ДАК",<br>г. Красноярск                              | ТУ РБ 5000<br>48054.020<br>-2001      |  |
|                   |             | под<br>кронштейн<br>несущий,<br>несущий | шт. 0,000                                           | Полиамид<br>ПА6-210/311                                            | ООО<br>"Метафракс",<br>г. Губаха                         | OCT6-06-<br>C9-93                     |  |
|                   |             | угловой                                 |                                                     | Паронит<br>ПОН                                                     |                                                          | ГОСТ<br>481-80                        |  |
|                   |             | TYVEK House-Wrap<br>TYVEK SOFT          | Плотность<br>0,06 кг/м²                             | 100% полимер                                                       | "Du Pont<br>Engineering<br>Product S. A.",<br>Люксембург |                                       |  |
|                   | ГПП         | Фибротек РС-3<br>Проф                   | Плотность<br>0,1 кг/м²                              | Полотно<br>нетканое<br>полипро-<br>пиленовое                       | ООО<br>"Лентекс"                                         | и́ствительного ТС                     |  |
|                   |             | TECTOTHEN-Top<br>2000<br>TECTOTHEN FAS  | Плотность<br>0,21 кг/м²                             | Трехслойная пленка Полиэстерное волокно с полидисперсным покрытием | "TECTOTHEN<br>Bauproducte<br>GmbH",<br>Германия          | Согласно действит                     |  |
|                   |             | ИЗОЛТЕКС НГ<br>ИЗОЛТЕКС ФАС             | Плотность<br>0,13 кг/м²                             | Стеклоткань                                                        | ООО<br>"Аяском"                                          | S                                     |  |
|                   |             | TEND KM-0<br>TEND FR                    | Средняя<br>плотность<br>0,11-0,16 кг/м <sup>2</sup> | Ткань<br>строительная<br>полимерная                                | ООО<br>"Парагон",<br>г. Санкт-<br>Петербург              | ТУ 8390-<br>001-<br>96837872-<br>2008 |  |

СИАЛ Навесная фасадная система

Лист

2.6

| Эскиз<br>элемента | Обозначение                                       | Наименование                                    | Масса,<br>кг                     | Материал                                          | Производитель                                        | НД                          |
|-------------------|---------------------------------------------------|-------------------------------------------------|----------------------------------|---------------------------------------------------|------------------------------------------------------|-----------------------------|
|                   |                                                   | PAROC<br>WAS 25<br>WAS 35<br>WPS 3n<br>WPS 3nj  |                                  |                                                   | "PAROC OY AB",<br>Финляндия<br>"UAB PAROC",<br>Литва |                             |
|                   |                                                   | NOBASIL M75                                     |                                  |                                                   | "KNAUF<br>Insulation s. r. o",<br>Словакия           |                             |
|                   |                                                   | ВЕНТИ БАТТС В<br>ВЕНТИ БАТТС<br>ВЕНТИ БАТТС Д   |                                  |                                                   | 3A<br>М ерал я<br>вата"                              |                             |
|                   | УП (утеплитель)                                   | П-20<br>П-30<br>П-30С<br>П-30СЧ<br>П-30СЧ Фасад | на п одукцию                     | тны<br>негорю е<br>ил<br>сте оволок-<br>нистые    | ОАО "Урса<br>Чудово",<br>г. Чудово                   | Согласно действительного ТС |
| (y reiniure ib)   | ВентФас Низ<br>нтФасад-Моно<br>Вент-Фасад-        | Согласно                                        | плиты на синтетическом связующем |                                                   | Согласно дей                                         |                             |
|                   | Моно/ч<br>ВентФасад-Верх<br>Вент-Фасад-<br>Верх/ч |                                                 |                                  | ООО "Сен-Гобен<br>Строительная<br>Продукция Рус." |                                                      |                             |
|                   | ВентФасад-<br>Оптима<br>Вент-Фасад-<br>Оптима/ч   |                                                 |                                  |                                                   |                                                      |                             |

Лист 2.7

| Крепежные элементы |
|--------------------|
|--------------------|

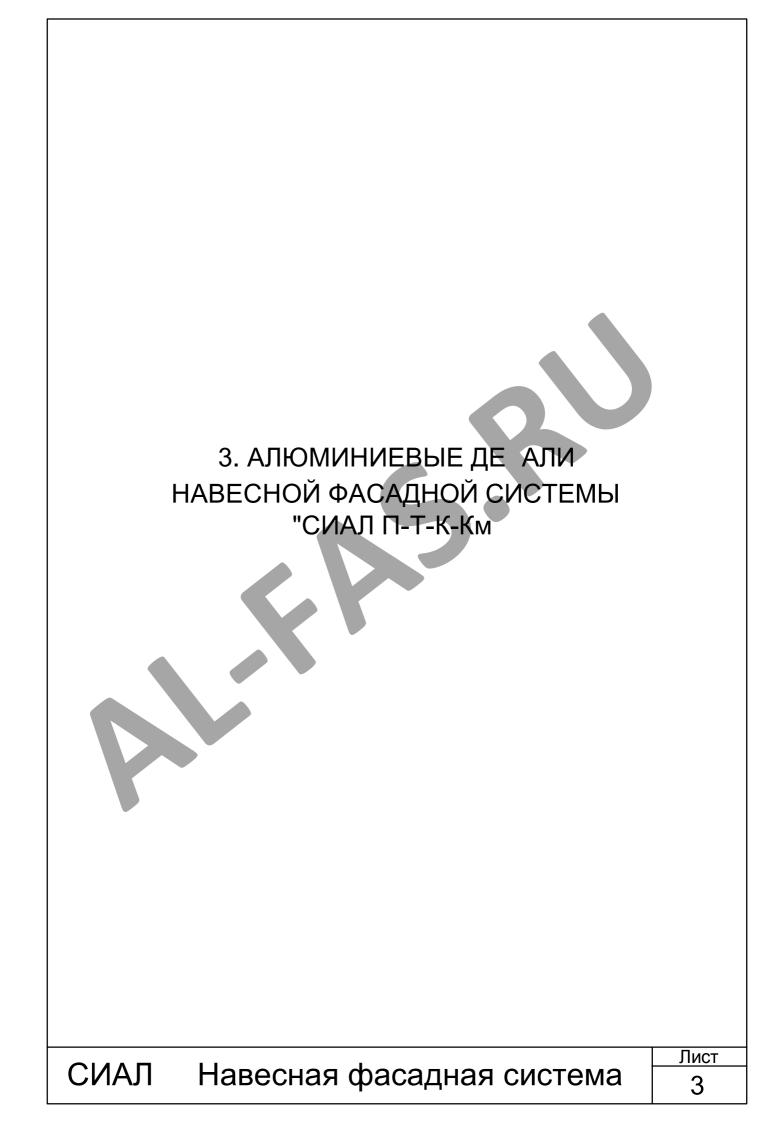
| Эскиз<br>элемента | Обоз | начение                          | Наименование                | Масса,<br>кг         | Материал                                                                                     | Производитель                                                                                                                                                    | нд                          |
|-------------------|------|----------------------------------|-----------------------------|----------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                   | ЗШ   | 3,2xL*                           | Заклепка                    |                      | Алюм./нерж.<br>AlMg3,5/A2                                                                    | BRALO<br>(Испания)<br>MMA Spinato<br>(Испания)<br>ELNAR<br>(Китай)<br>HARPOON<br>(Китай)                                                                         |                             |
|                   | ЗШс  | 4,8xL*<br>5xL*                   | стандартный<br>бортик       |                      | Нерж./нерж.<br>A2/A2                                                                         | BRALO<br>(Испания)<br>MMA Spinato<br>(Испания)<br>E AR<br>(Ки й)<br>HARPO<br>(Китай)                                                                             |                             |
|                   | AK   | MBR m2, m3 SXS FUR HRD SD SDP ND | Анк                         | ласно ТО на про кцию | Сталь<br>12х18Н10Т                                                                           | "MUNG B ung- stechnik AG" Швейцария) Fischerwerke Artur Fischer GmbH&Co, Kg (Германия)  HRD Hilti Corporation (Лихтенштейн)  EJOT Holding GmbH&Co, Kg (Германия) | Согласно действительного ТС |
|                   | дс   | TR Termoz 8N ДС-1 ДС-2           | Дюбель<br>тарельчатый       | Согл                 | Распорный элемент из углеродистой стали или коррозионностойкой стали и гильзами из полиамида | EJOT Holding<br>GmbH&Co, Kg<br>(Германия)<br>Fischerwerke<br>Artur Fischer<br>GmbH&Co, Kg<br>(Германия)<br>Бийский<br>завод<br>стеклопластиков                   |                             |
|                   | ШО   | 4,2xL                            | Винт<br>самонаре-<br>зающий |                      | Нерж. сталь                                                                                  | WURTH<br>(Германия)                                                                                                                                              | DIN7981<br>A2               |

СИАЛ Навесная фасадная система

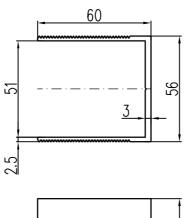
Лист 2.8

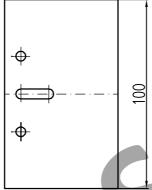
| Эскиз<br>элемента | Обозначение | Наименование | Масса,<br>кг |        | Материал             | Производитель                     | НД                                    |
|-------------------|-------------|--------------|--------------|--------|----------------------|-----------------------------------|---------------------------------------|
|                   |             |              |              |        | 12X18H10T            | ООО<br>"КомФас",<br>г. Красноярск | ТУ-5262-<br>001-<br>711087<br>58-2004 |
|                   | КмР-8       | Кляммер      | шт. 0,039    | ст 1   | AISI 304<br>AISI 430 | ЗАО<br>"Альтернатива"             | TУ-1121-<br>001-<br>215931<br>68-2005 |
|                   | КмР-10      | рядовой      | шт. 0,009    | Лист   | 08X18H10<br>12X18H9T |                                   | ГОСТ<br>5632-72                       |
|                   |             |              |              |        | 12Х15Г9НД            |                                   | ТУ-РМО-<br>006/05                     |
|                   |             |              |              |        | 12X18H10T            | О<br>"Ком с",<br>Красн ск         | 5262-<br>1-<br>7 87<br>58 04          |
|                   | КмТ-8       | Кляммер      | шт. 0,019    | Лист 1 | AISI 304<br>AISI 430 | " ЗАО атива"                      | 1121-<br>001-<br>215931<br>68-2005    |
|                   | КмТ-10      | торцевой     |              | νЦ     | 08X18H10<br>12X18H9T |                                   | ГОСТ<br>5632-72                       |
|                   |             |              |              |        | 12Х1 9НД             |                                   | ТУ-РМО-<br>006/05                     |
|                   | Б-8         | Кляммер      | ·            |        | 12X18H10T            | ООО<br>"КомФас",<br>г. Красноярск | TУ-5262-<br>001-<br>711087<br>58-2004 |
|                   |             |              | шт. 0,019    | Лист 1 | AISI 304<br>AISI 430 | ЗАО<br>"Альтернатива"             | TУ-1121-<br>001-<br>215931<br>68-2005 |
|                   | КмБ-        | боковой      | 7,7          | ЛП     | 08X18H10<br>12X18H9T |                                   | ГОСТ<br>5632-72                       |
|                   |             |              |              |        | 12Х15Г9НД            |                                   | ТУ-РМО-<br>006/05                     |
|                   |             |              |              |        | 12X18H10T            | ООО<br>"КомФас",<br>г. Красноярск | ТУ-5262-<br>001-<br>711087<br>58-2004 |
|                   | КмК-8       | Кляммер      | шт. 0,009    | ст 1   | AISI 304<br>AISI 430 | ЗАО<br>"Альтернатива"             | TУ-1121-<br>001-<br>215931<br>68-2005 |
|                   | КмК-10      | конечный     | шт. 0,000    | Лист   | 08X18H10<br>12X18H9T |                                   | ГОСТ<br>5632-72                       |
|                   |             |              |              |        | 12Х15Г9НД            |                                   | ТУ-РМО-<br>006/05                     |

Лист 2.9

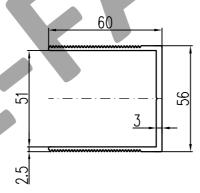

| Эскиз<br>элемента | Обозначение  | Наименование                         | Масса,<br>кг         | Материал                                            | Производитель                                   | нд               |
|-------------------|--------------|--------------------------------------|----------------------|-----------------------------------------------------|-------------------------------------------------|------------------|
|                   | ЭК1          | Крепежный<br>элемент<br>КЭ 1         | шт. 0,14             |                                                     |                                                 |                  |
| 0                 | ЭК2<br>ЭК2-1 | Крепежный<br>элемент<br>КЭ 2, КЭ 2-1 | шт. 0,14<br>шт. 0,23 | Сталь<br>оцинкованная<br>с двух сторон,<br>S = 1 мм |                                                 |                  |
|                   | ЭК4          | Крепежный<br>элемент<br>КЭ 4         | шт. 0,2              |                                                     | АО<br>"Магни орский<br>Металлур еский<br>комбин | ГОСТ<br>14918-80 |
|                   | 00           | Оконный<br>откос                     | 1 15/12              | Окраш ая<br>оцинкова я                              |                                                 |                  |
|                   | ОС           | Оконный<br>сл                        | 1 кг/м²              | сталь,<br>Smin 55 мм                                |                                                 |                  |

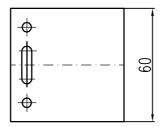
<sup>\* -</sup> длина заклепки L мм выби ется в зави сти от рекомендации производителей.


ПРИМЕЧАНИЕ. Возможность з ы указан х в данной спецификации покупных материалов и изделий на аналогичные по своим харак истикам, назначению и области применения материалы и изделия, пригодность которых подтвер дена оответствующими техническими свидетельствами, устанавливается в проекте на оительств о согласованию с заявителем.


Допускается п менение не алюминиевых комплектующих и крепежных элементов Российских и заруб жных про одителей неуказанных в данном альбоме технических решений имеющих дей льное св ете ство о пригодности продукции в строительстве на территории РФ.

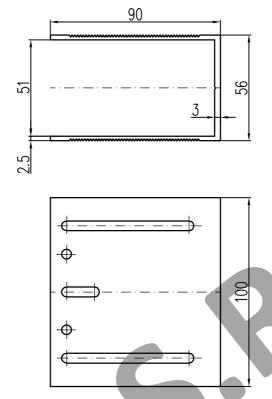




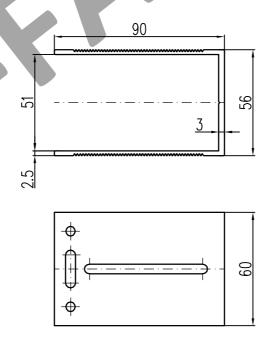


## П-ОБРАЗНЫЕ КРОНШТЕЙНЫ И УДЛИНИТЕЛИ





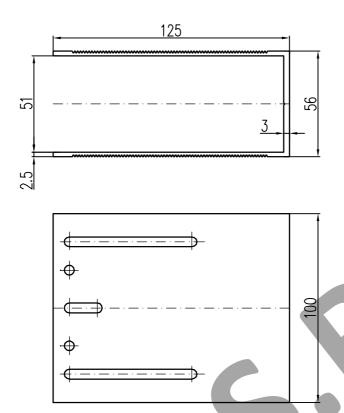

Кронштейн нес щ й КН-60-КПС 254



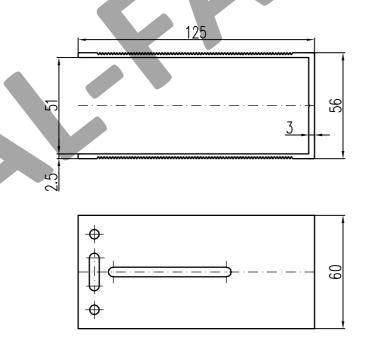



Кронштейн опорный КО-60-КПС 254

| JINCT |      |                           |
|-------|------|---------------------------|
| 3.1   | СИАЛ | Навесная фасадная система |

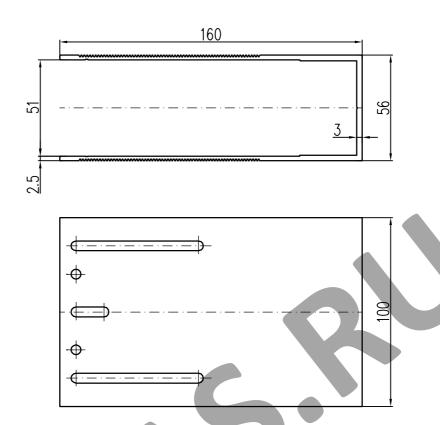



Кронштей сущий КН 90-КП45469-1

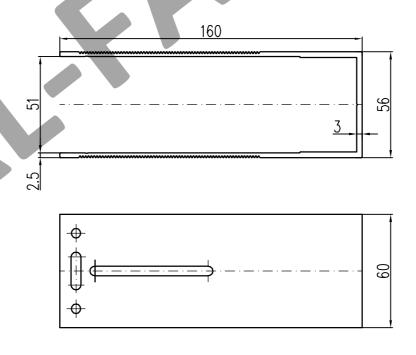



Кронштейн опорный КО-90-КП45469-1

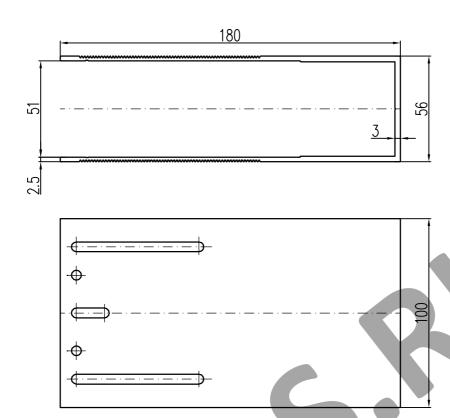
|      |                           | Лист |
|------|---------------------------|------|
| СИАЛ | Навесная фасадная система | 3.2  |



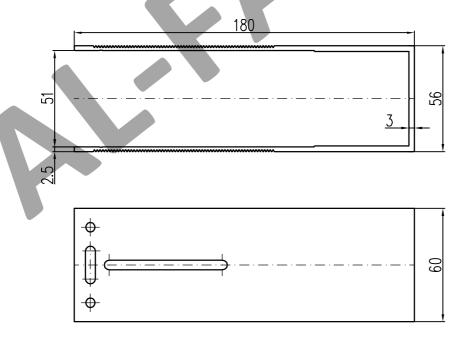

Кронштейн несущ КН-125-КПС 255




Кронштейн опорный КО-125-КПС 255

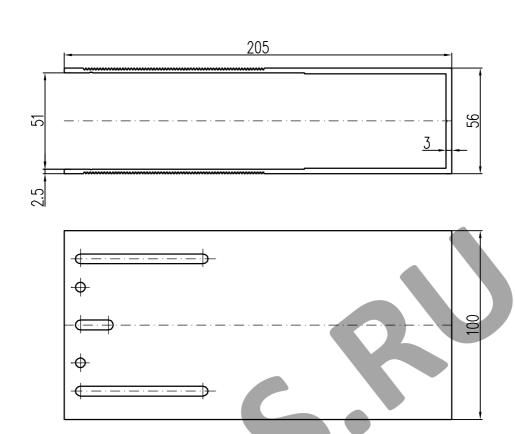

| Лист |      |                           |
|------|------|---------------------------|
| 3.3  | СИАЛ | Навесная фасадная система |



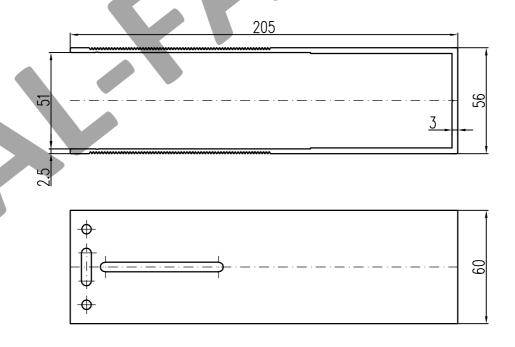

Кронштейн е ущий КН-160-КП45432-2



Кронштейн опорный КО-160-КП45432-2

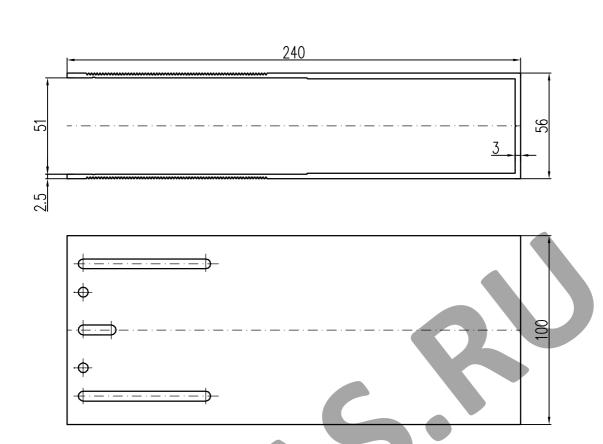



Кронштейн несущ й КН-180-КПС 256

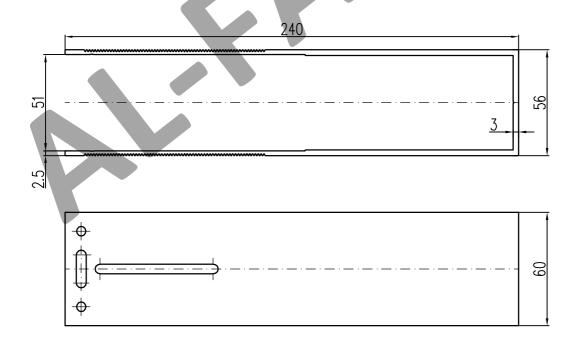



Кронштейн опорный КО-180-КПС 256

| Лист |      |                           |
|------|------|---------------------------|
| 3.5  | СИАЛ | Навесная фасадная система |

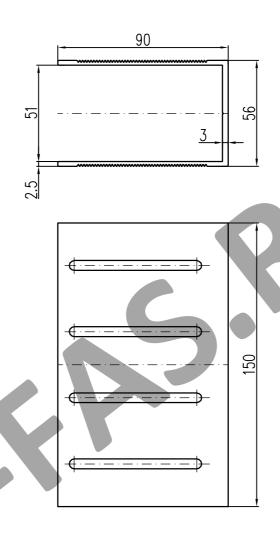



Кронштей н сущий КН 205-КП45463-2




Кронштейн опорный КО-205-КП45463-2

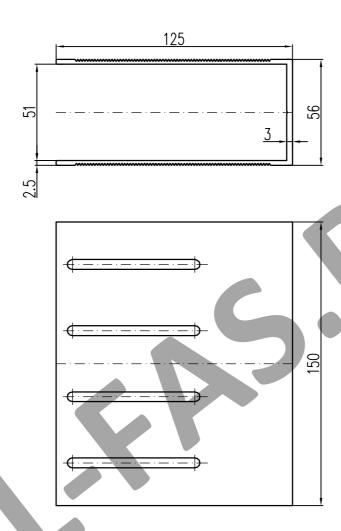
3.6




Кронштейн несущ й КН-240-КПС 705

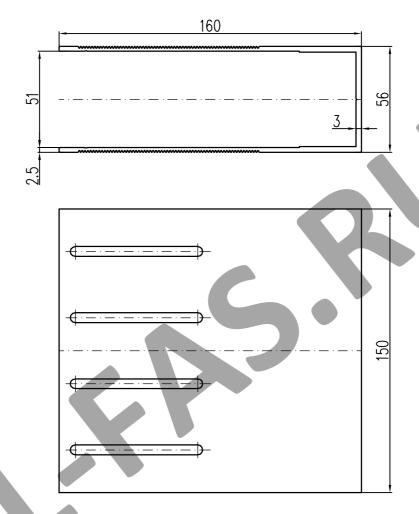


Кронштейн опорный КО-240-КПС 705


| Лист |      |                           |
|------|------|---------------------------|
| 3.7  | СИАЛ | Навесная фасадная система |

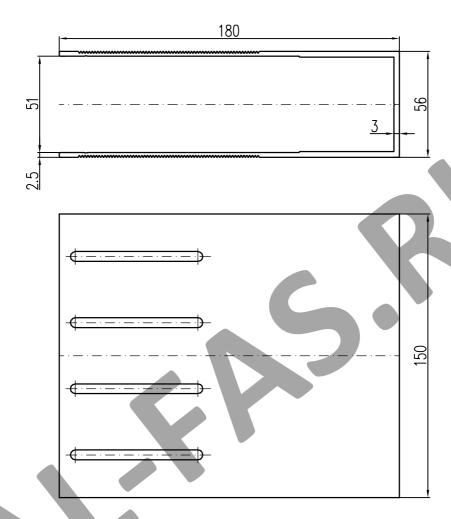


Кронштейн спаренный КС-90-КП45469-1


СИАЛ Навесная фасадная система

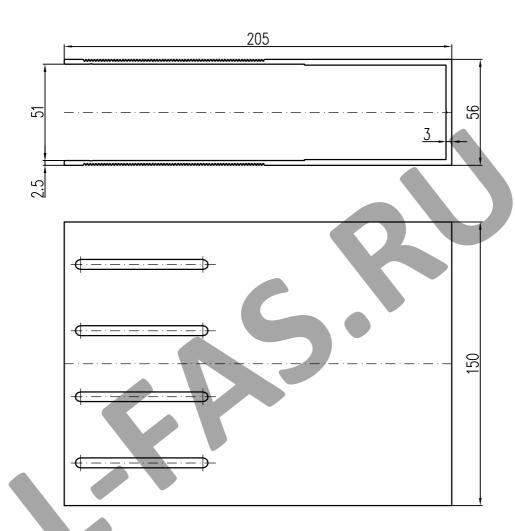
Лист 3.8



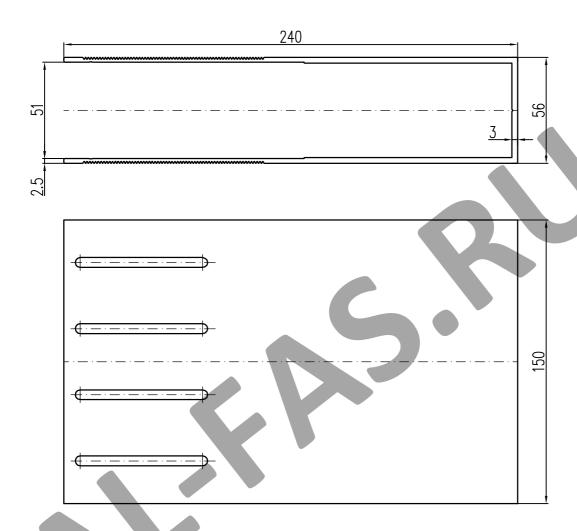

Кронштейн спаренный КС-125-КПС 255

| Лист |  |
|------|--|
| 3.9  |  |



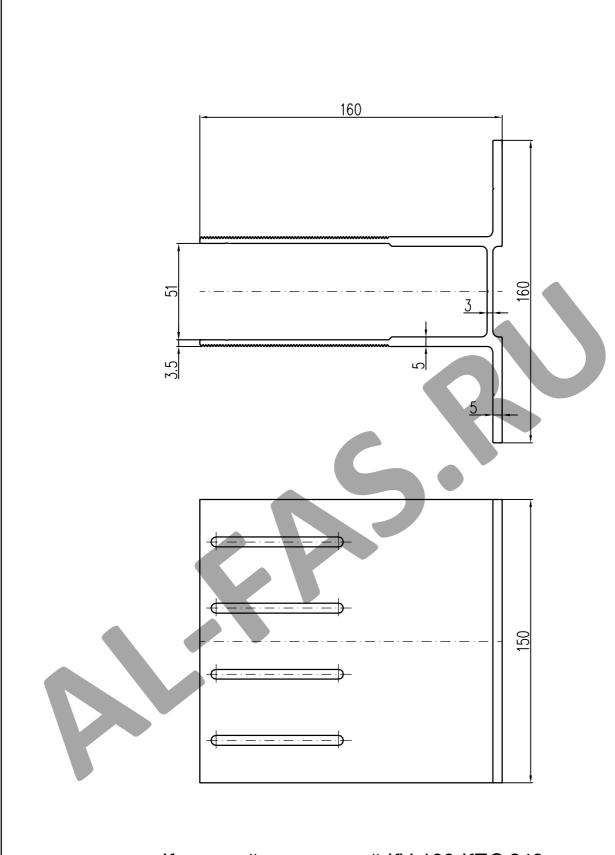

Кронштейн спаренный КС-160-КП45432-2

| СИАЛ | Навесная фасадная система |
|------|---------------------------|
|------|---------------------------|




Кронштейн спаренный КС-180-КПС 256

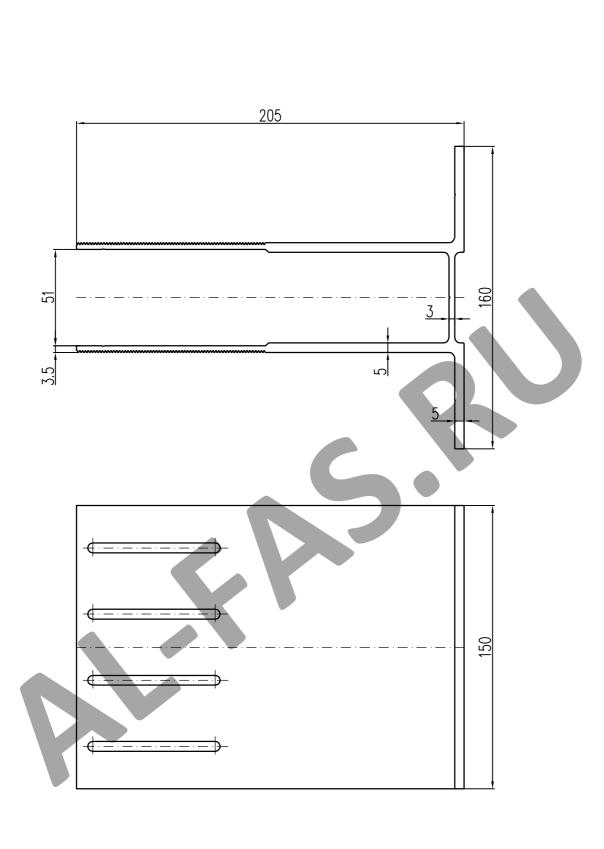
| Ли | CT | • |
|----|----|---|
| 3. | 1  | 1 |




Кронштейн спаренный КС-205-КП45463-2

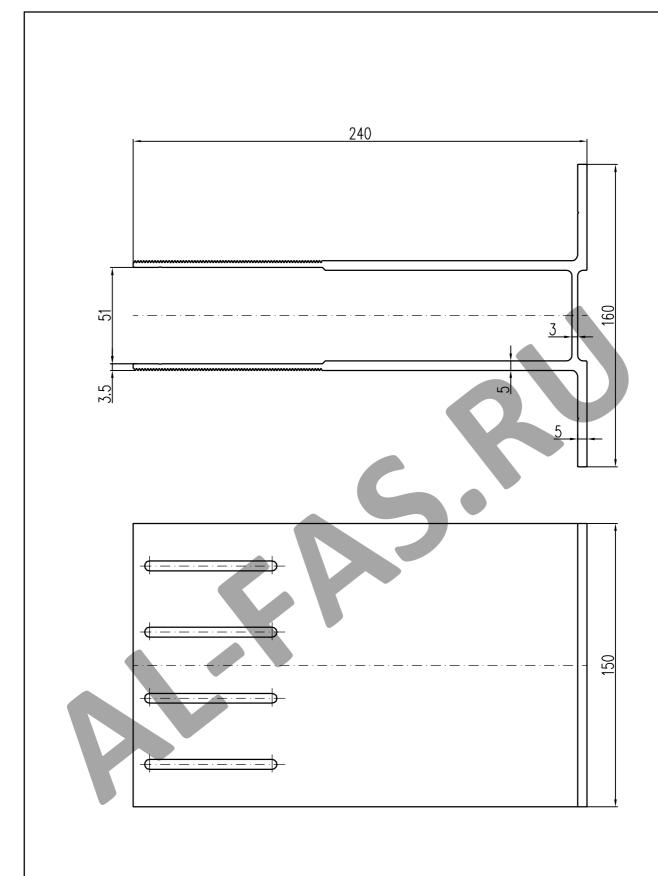


Кронштейн спаренный КС-240-КПС 705


| Ли | ICT |
|----|-----|
| 3  | 13  |

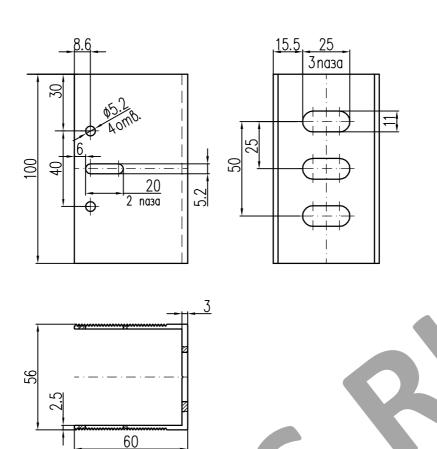


Кронштейн усиленный КУ-160-КПС 249

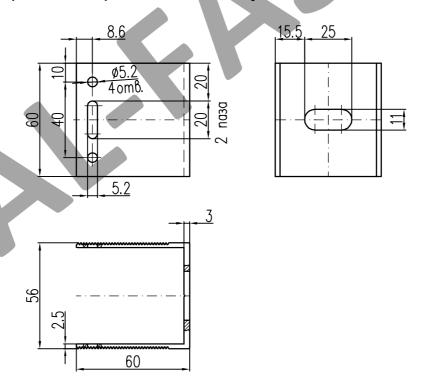

СИАЛ Навесная фасадная система

Лист 3.14



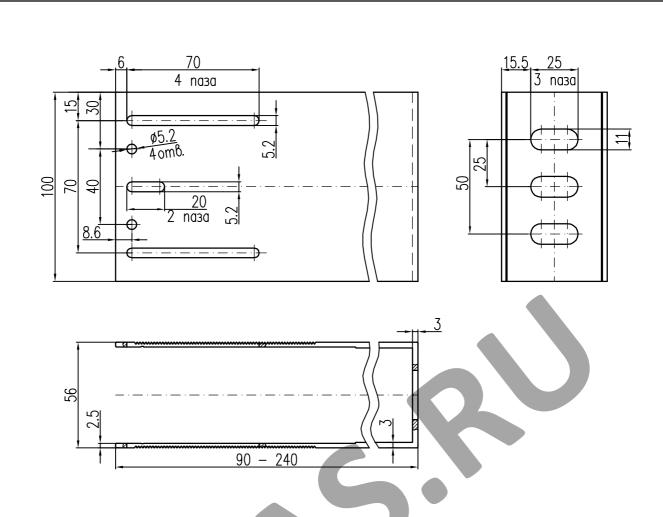

Кронштейн усиленный КУ-205-КПС 276

| <u>Ли</u> | ICT | • |
|-----------|-----|---|
| 3         | 1   | 5 |

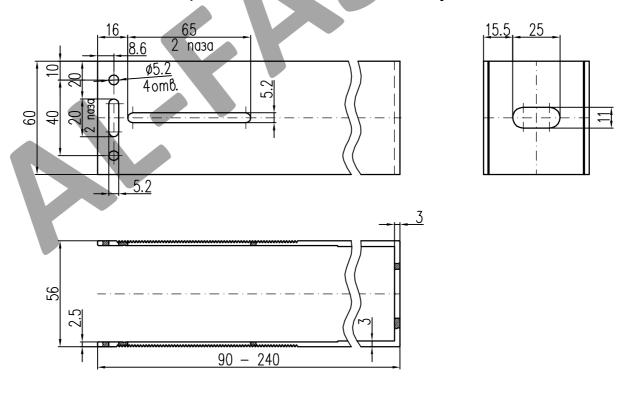



Кронштейн усиленный КУ-240-КПС 706

СИАЛ Навесная фасадная система



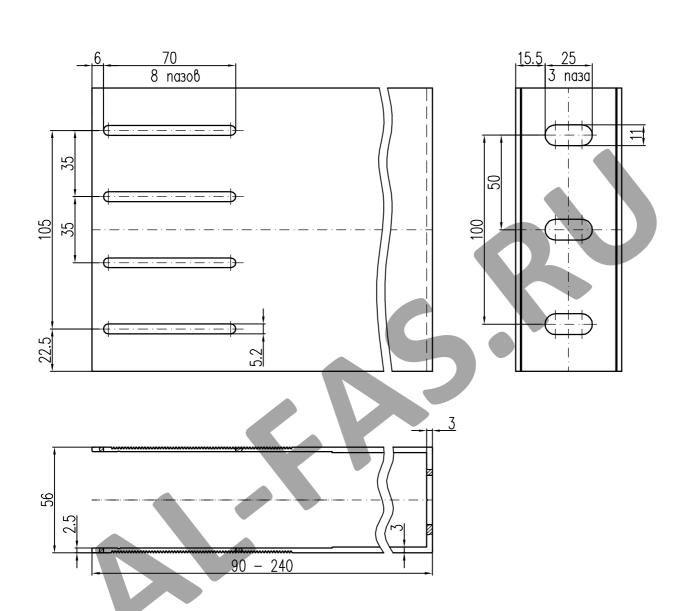

## Обработка кронштейн н сущего КН-60-КПС 254




Обработка кронштейна опорного КО-60-КПС 254

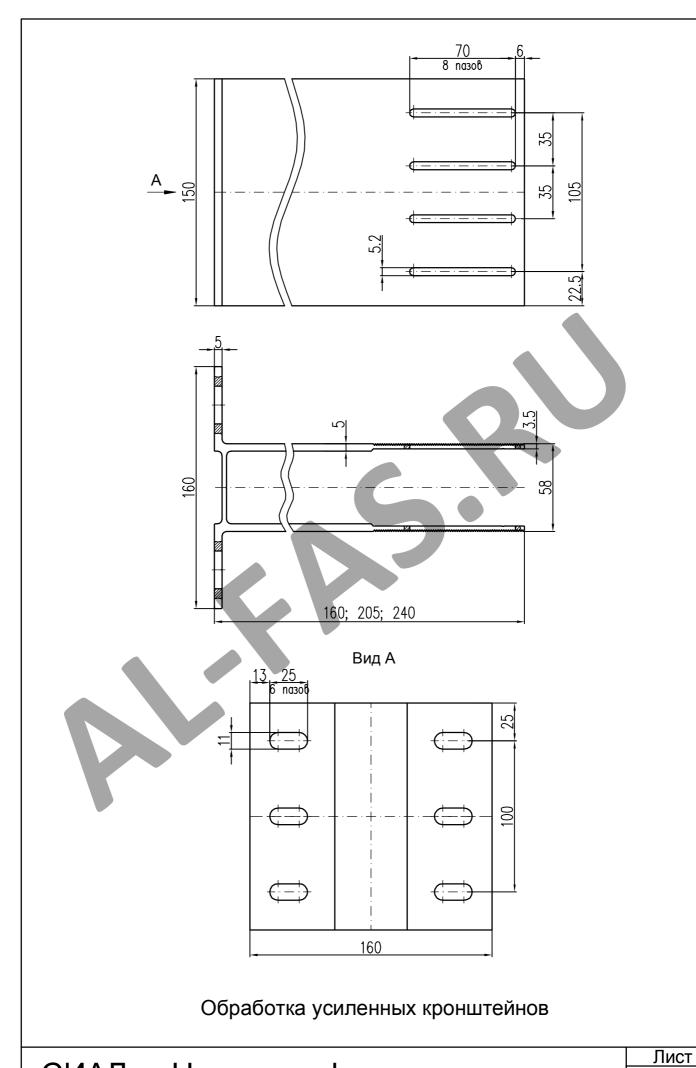
| Лист |      |                           |
|------|------|---------------------------|
| 3.17 | СИАЛ | Навесная фасадная система |




## Обработ а онштей ов несущих КН

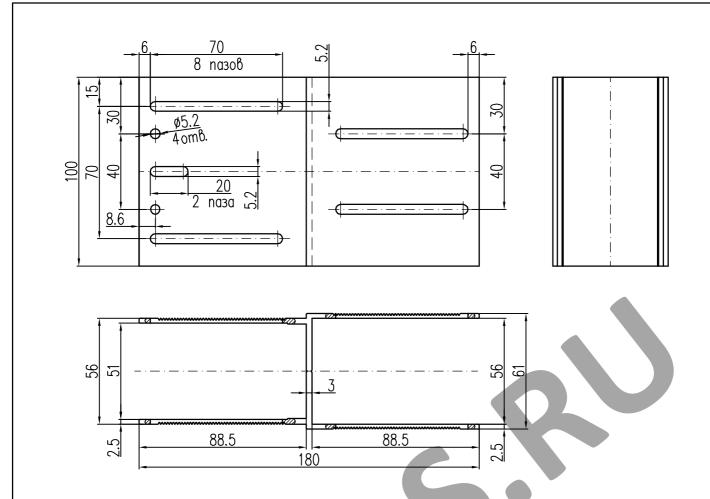


Обработка кронштейнов опорных КО

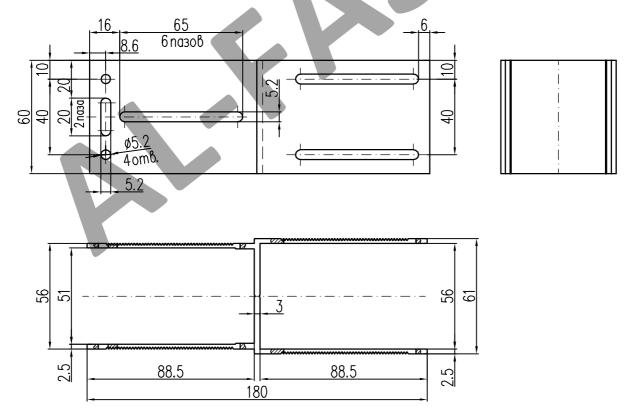

8

|      |                           | ЛИСТ |
|------|---------------------------|------|
| СИАЛ | Навесная фасадная система | 3.18 |



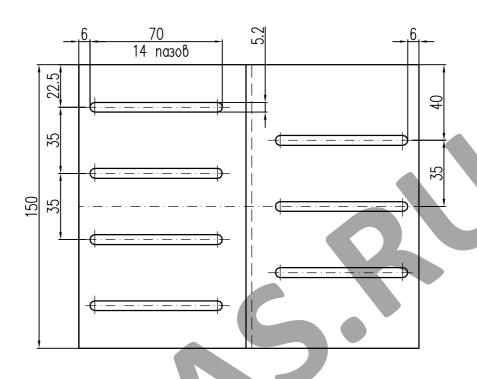

Обработка спаренных кронштейнов

| ЛИСТ |      |                           |
|------|------|---------------------------|
| 3.19 | СИАЛ | Навесная фасадная система |




СИАЛ Навесная фасадная система

3.20

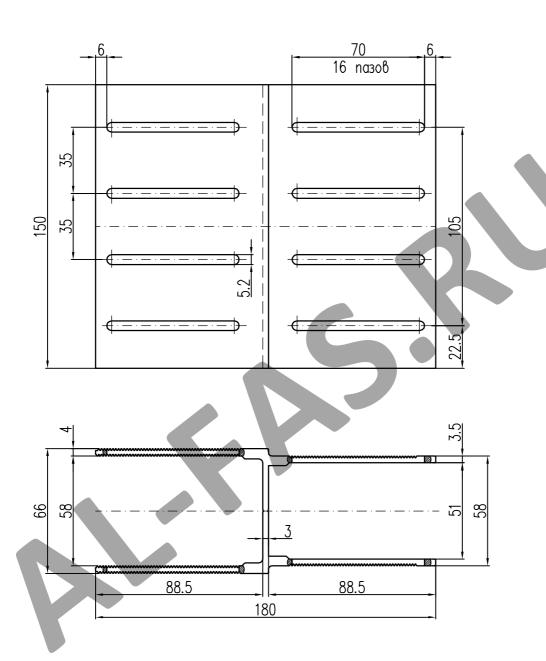




Обработка удлинителя кронштейна несущего УКН-180-КП45449-1



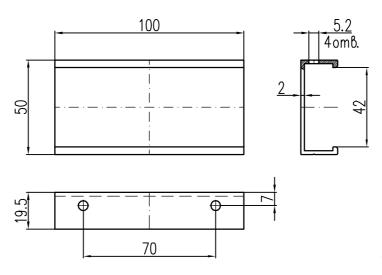
Обработка удлинителя кронштейна опорного УКО-180-КП45449-1


| Лист |      |                           |
|------|------|---------------------------|
| 3.21 | СИАЛ | Навесная фасадная система |

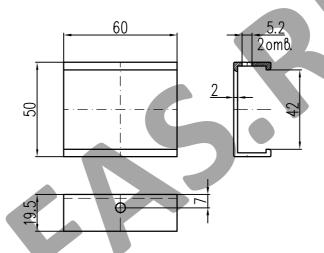




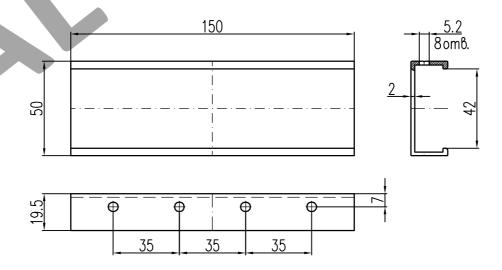
Обработка удлинителя кронштейна спаренного УКС-180-КП45449-1


СИАЛ Навесная фасадная система



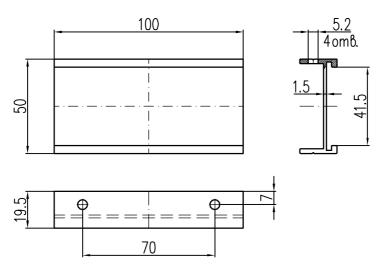

Обработка удлинителя кронштейна усиленного УКУ-180-КПС 580

| Лист |  |  |  |  |  |
|------|--|--|--|--|--|
| 3.23 |  |  |  |  |  |


#### САЛАЗКИ



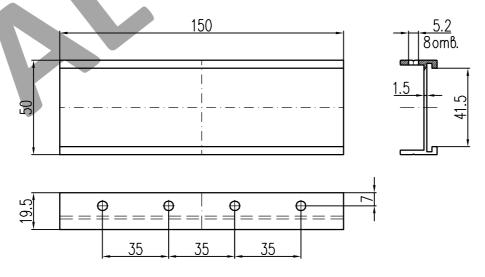
### Салазка большая СБ-КП45461




## Салазка малая СМ-КП45461

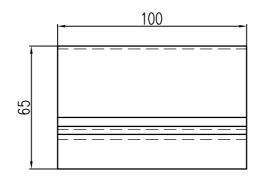


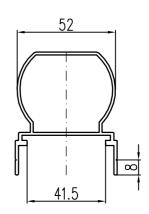
Салазка увеличенная СУ-КП45461


СИАЛ Навесная фасадная система



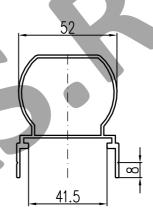
Салазка большая СБ-КПС 257



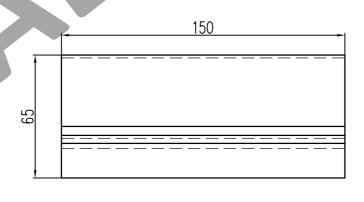


Сала ка малая СМ-КПС 257

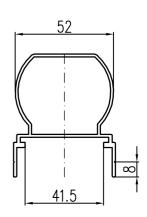


Салазка увеличенная СУ-КПС 257


| ЛИСТ |       |                           |
|------|-------|---------------------------|
| 3.25 | CNAJI | Навесная фасадная система |



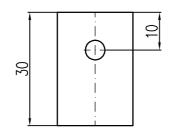


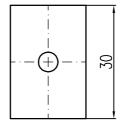


### Салазка большая СБ-КПС 581

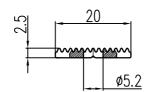


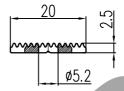


### Салазка малая СМ-КПС 581

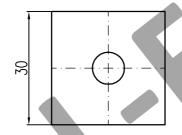


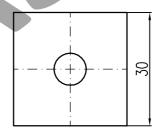



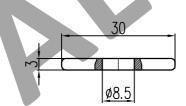


Салазка увеличенная СУ-КПС 581

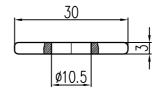

СИАЛ Навесная фасадная система

### ШАЙБЫ ФИКСИРУЮЩИЕ



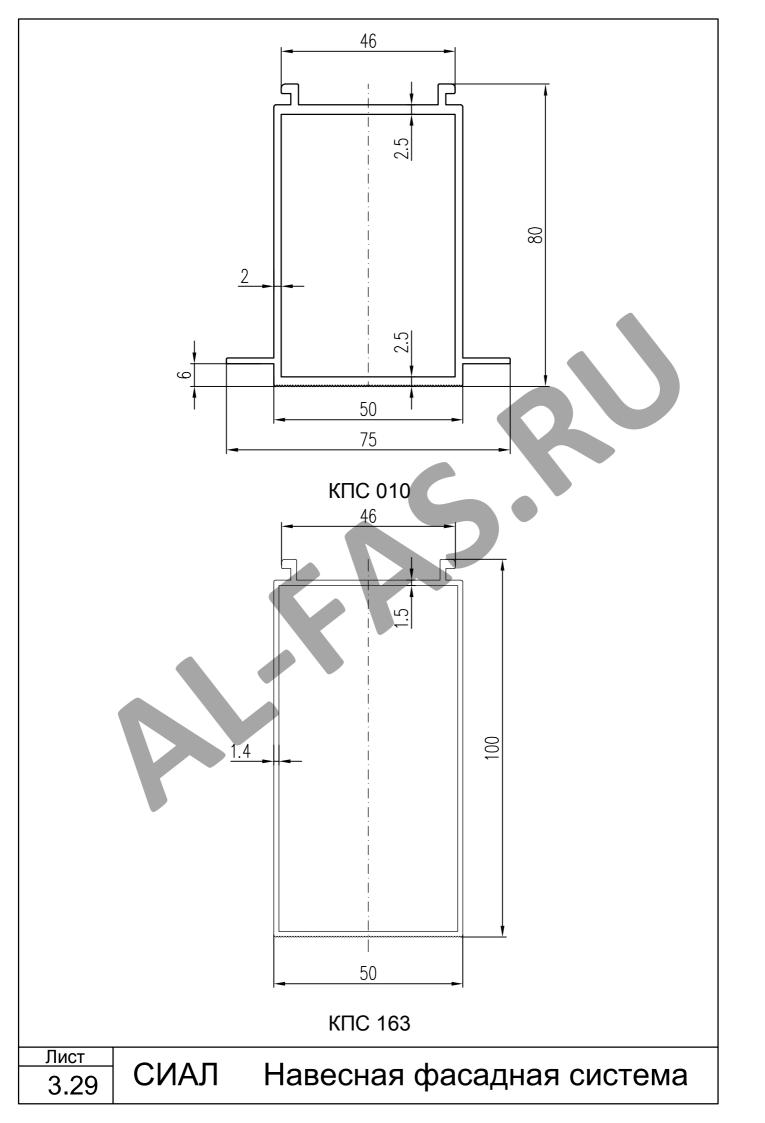



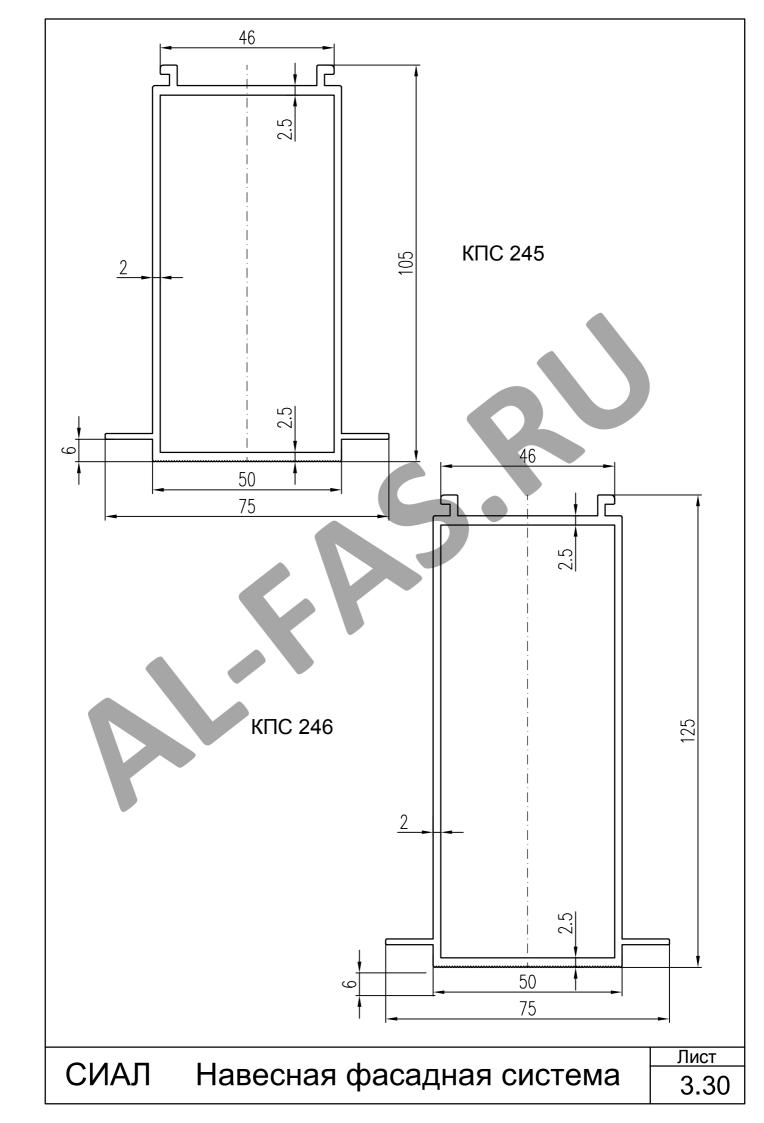



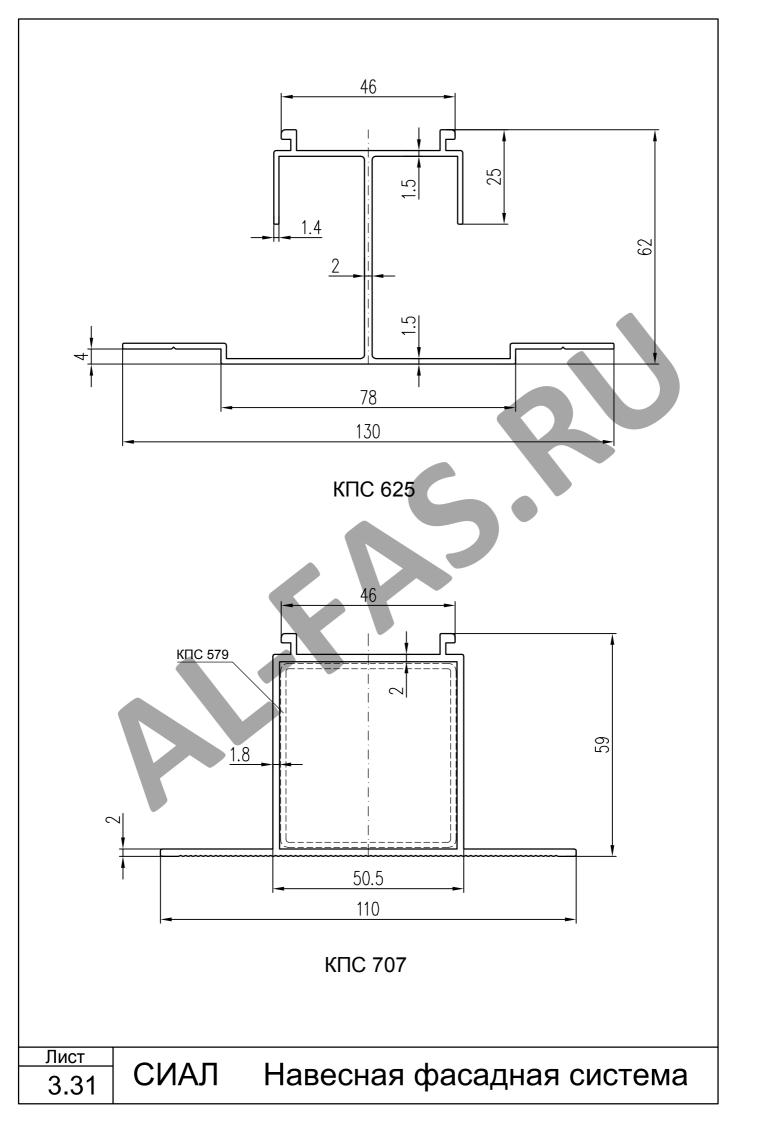



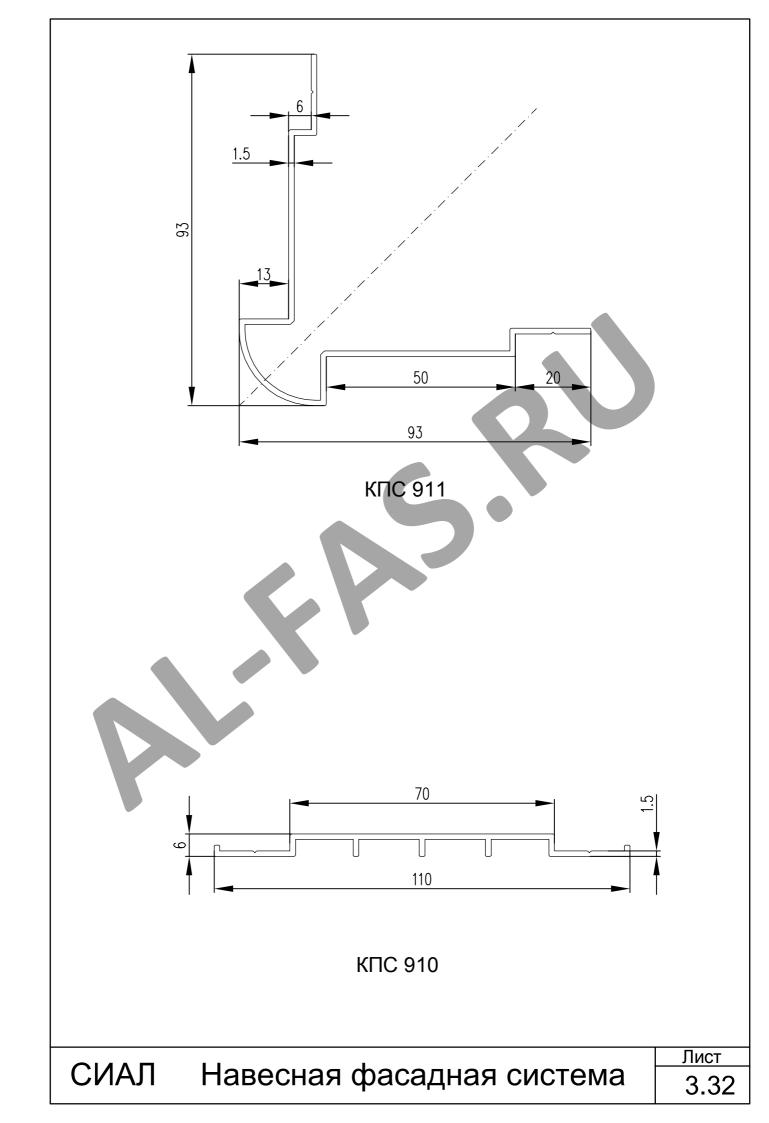

Шайба фиксирующая ШФ-5-КП45435-1 Шайба фи сирующая ШФ 5ц-КП45435-1





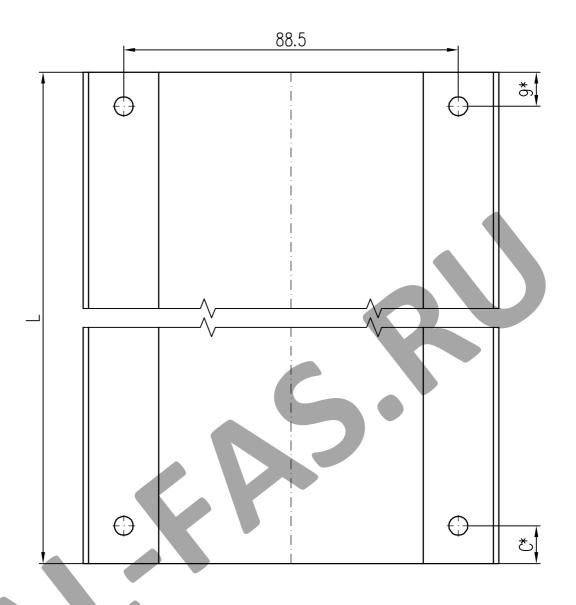



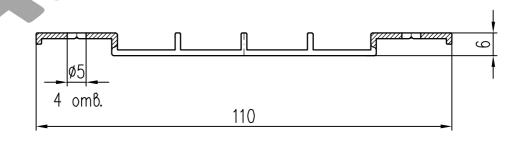





Шайба фиксирующая ШФ-8-ПК 801-2 Шайба фиксирующая ШФ-10-ПК 801-2

# НАПРАВЛЯЮЩИЕ 46 **ΚΠС 579** <u>1.4</u> 58 50 75 КП45480-1 46 50 КП451362 Лист СИАЛ Навесная фасадная система 3.28







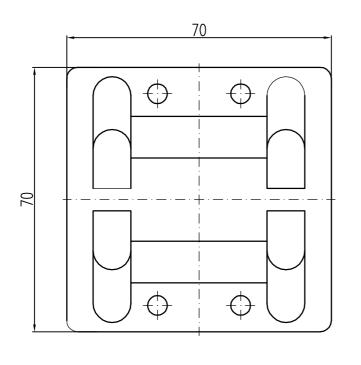

# ДЕРЖАТЕЛИ 20 КПС 568 19 КП45 37 ТРУБА 2.5 2.5 80 КПС 033 Лист СИАЛ Навесная фасадная система 3.33

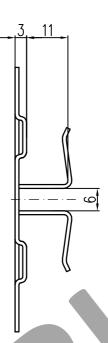
# ОБРАБОТКА ГОРИЗОНТАЛЬНЫХ НАПРАВЛЯЮЩИХ КПС 910

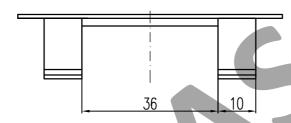




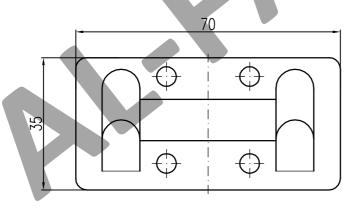
#### ПРИМЕЧАНИЕ

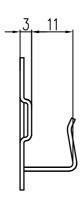

- \* размер 9 мм для установки на угловую направляющую КПС 911.
  \*\* размер С мм определяется в зависимости от вертикальной направляющей .

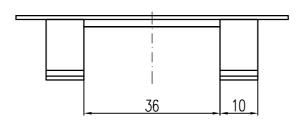

#### СИАЛ Навесная фасадная система







## ПРИМЕР КЛЯММЕРОВ ПОД ПЛИТЫ ТОЛЩИНОЙ 10ММ

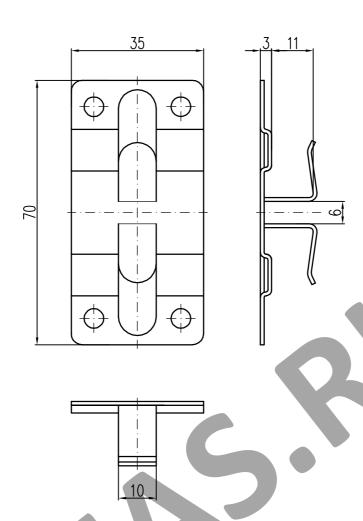


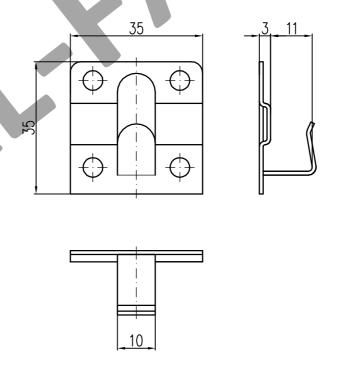



Клямм рряд вой КмР-10









Кляммер торцевой КмТ-10

| Лист |      |              |
|------|------|--------------|
| 4.1  | СИАЛ | Навесная фас |

Навесная фасадная система





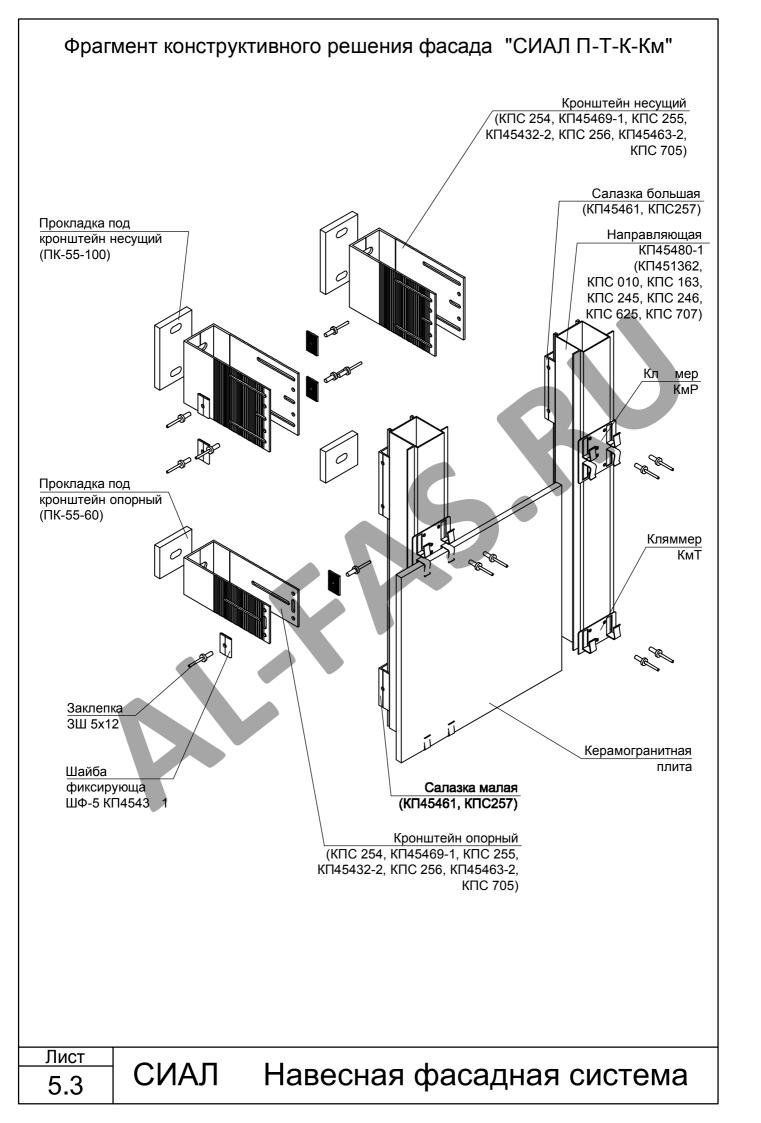


Кляммер конечный КмК-10

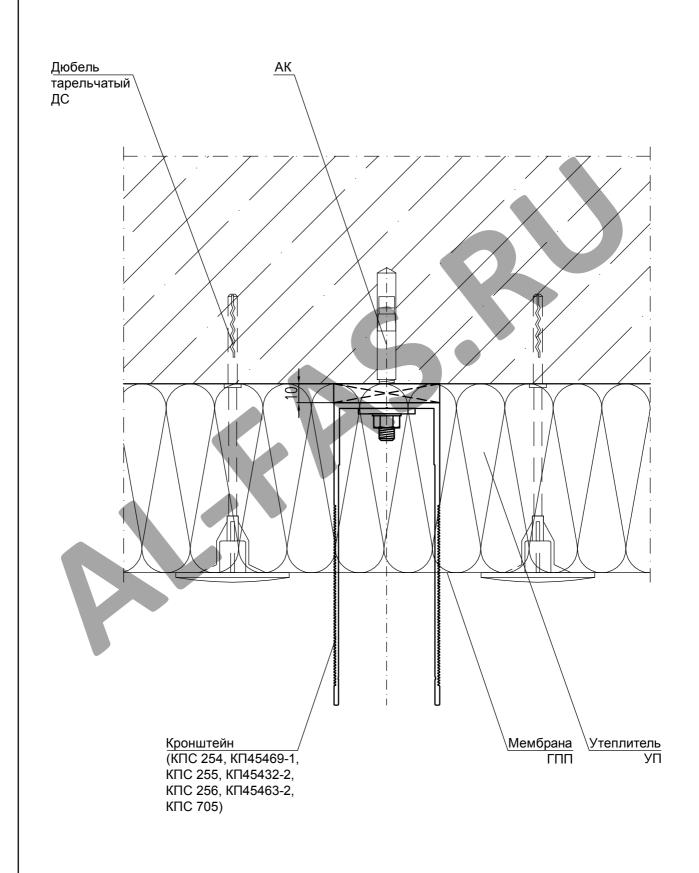
|      |                           | JINCI |
|------|---------------------------|-------|
| СИАЛ | Навесная фасадная система | 4.2   |






# ФРАГМЕНТ ФАСАДА 12 10 8 <u>16</u> 9 6 <u>15</u> <u>13</u> 11 18 5 7 Лист СИАЛ Навесная фасадная система 5.1

# Фрагмент конструктивного решения фасада "СИАЛ П-Т-К-Км" крепление за плиты перекрытия

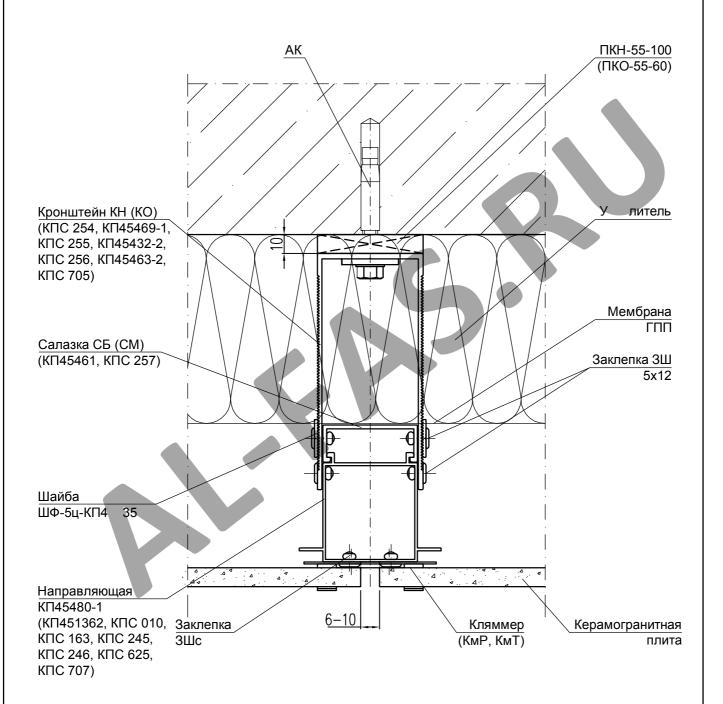



СИАЛ Навесная фасадная система

<u>Лист</u> **5.**2



# УЗЕЛ 1.1 - ГОРИЗОНТАЛЬНОЕ СЕЧЕНИЕ (показано крепление утеплителя )

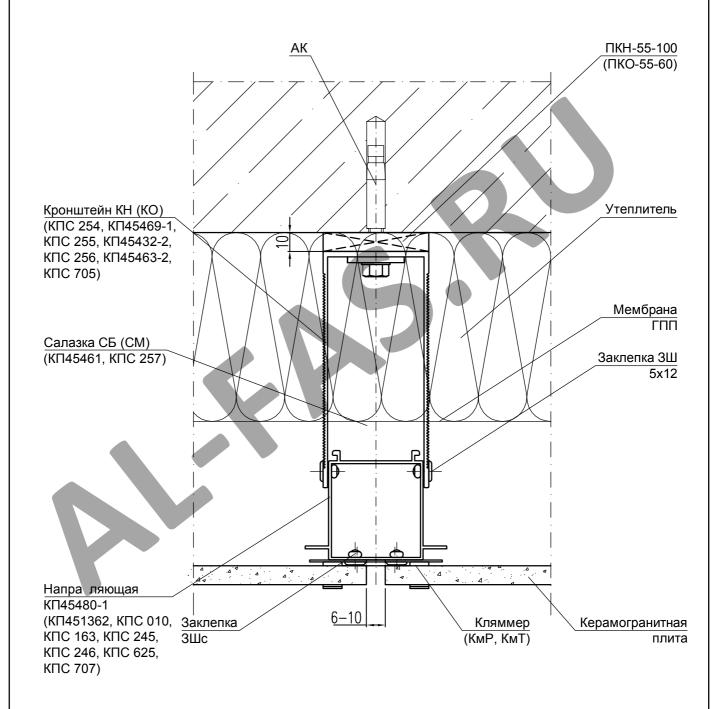



СИАЛ Навесная фасадная система

Лист

5.4

# УЗЕЛ 1.2 - ГОРИЗОНТАЛЬНОЕ СЕЧЕНИЕ применение кронштейна КН (КО)

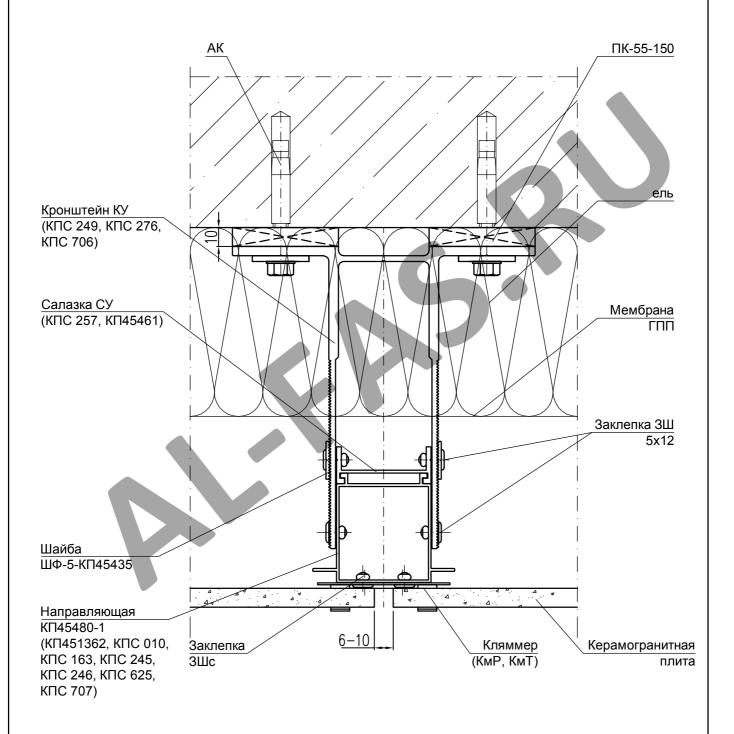



Лист

<del>5.5</del> СИАЛ

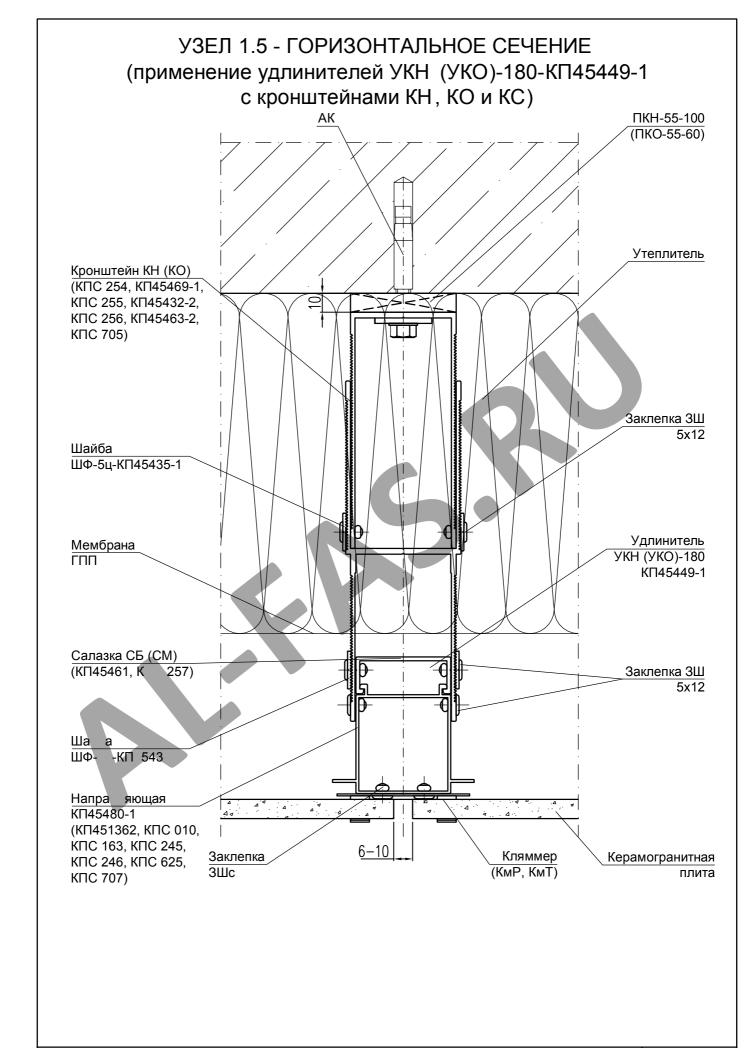
Навесная фасадная система

# УЗЕЛ 1.3 - ГОРИЗОНТАЛЬНОЕ СЕЧЕНИЕ применение кронштейна КН (КО) без салазок




СИАЛ Навесная фасадная система

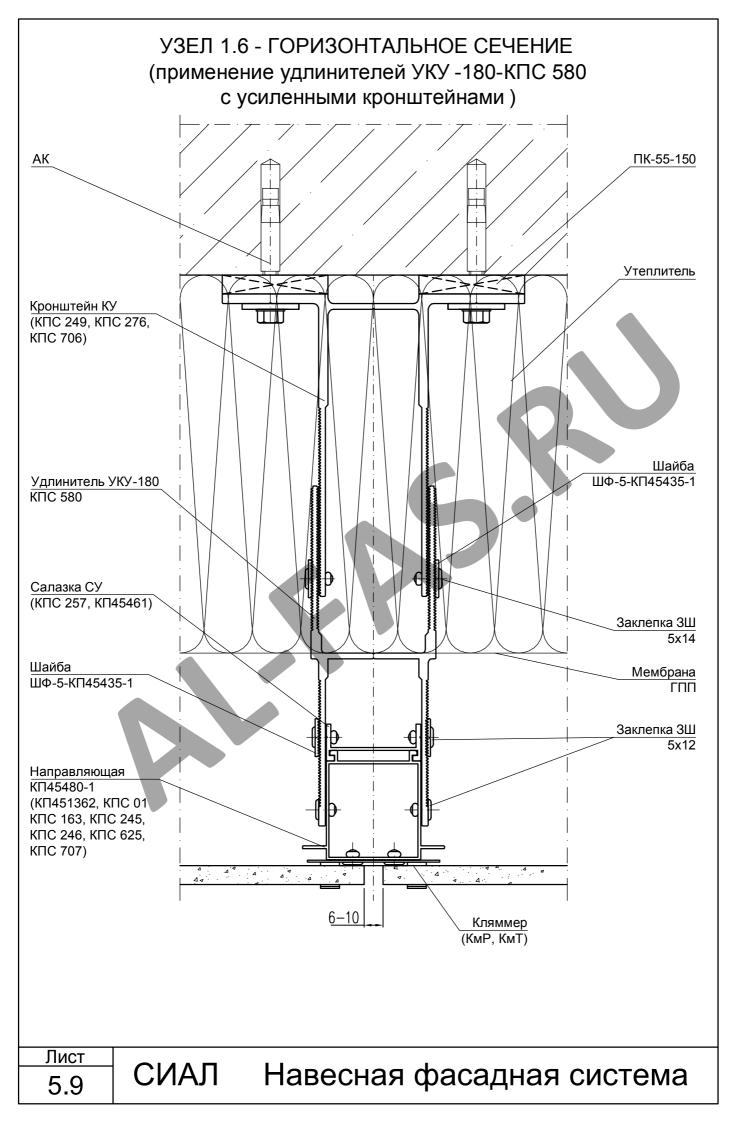
Лист


5.6

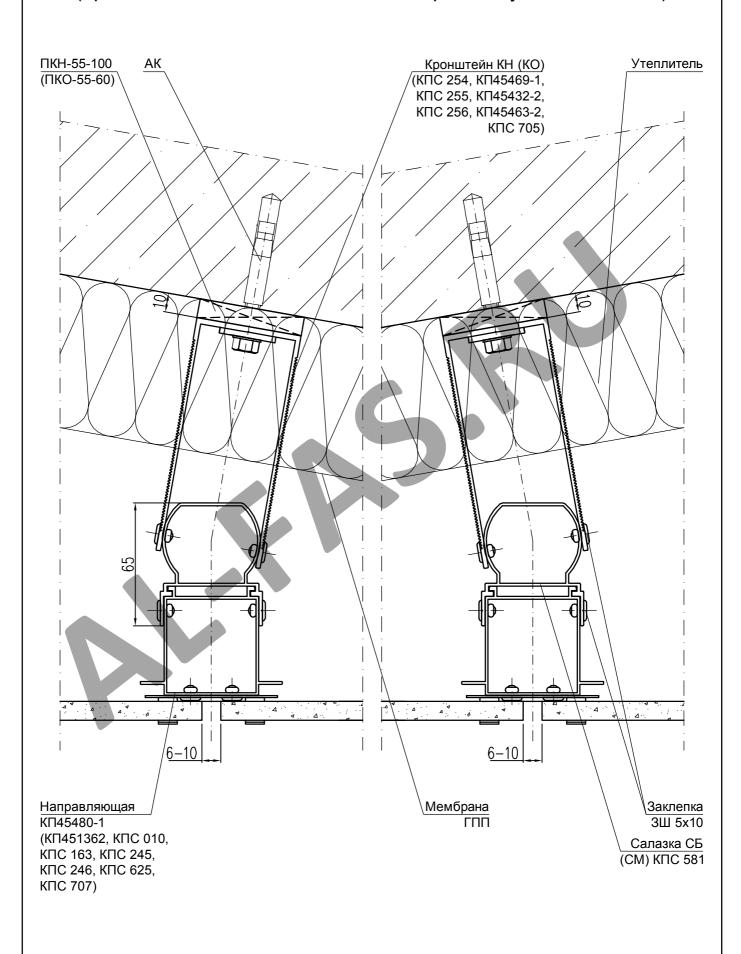
# УЗЕЛ 1.4 - ГОРИЗОНТАЛЬНОЕ СЕЧЕНИЕ (применение усиленных кронштейнов )



Лист


<del>5.7</del> СИАЛ

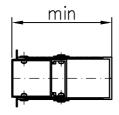


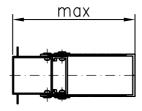

СИАЛ Навесная фасадная система

Лист

5.8




# УЗЕЛ 1.7 - ГОРИЗОНТАЛЬНОЕ СЕЧЕНИЕ (применение салазки КПС 581 на неровных участках стены)

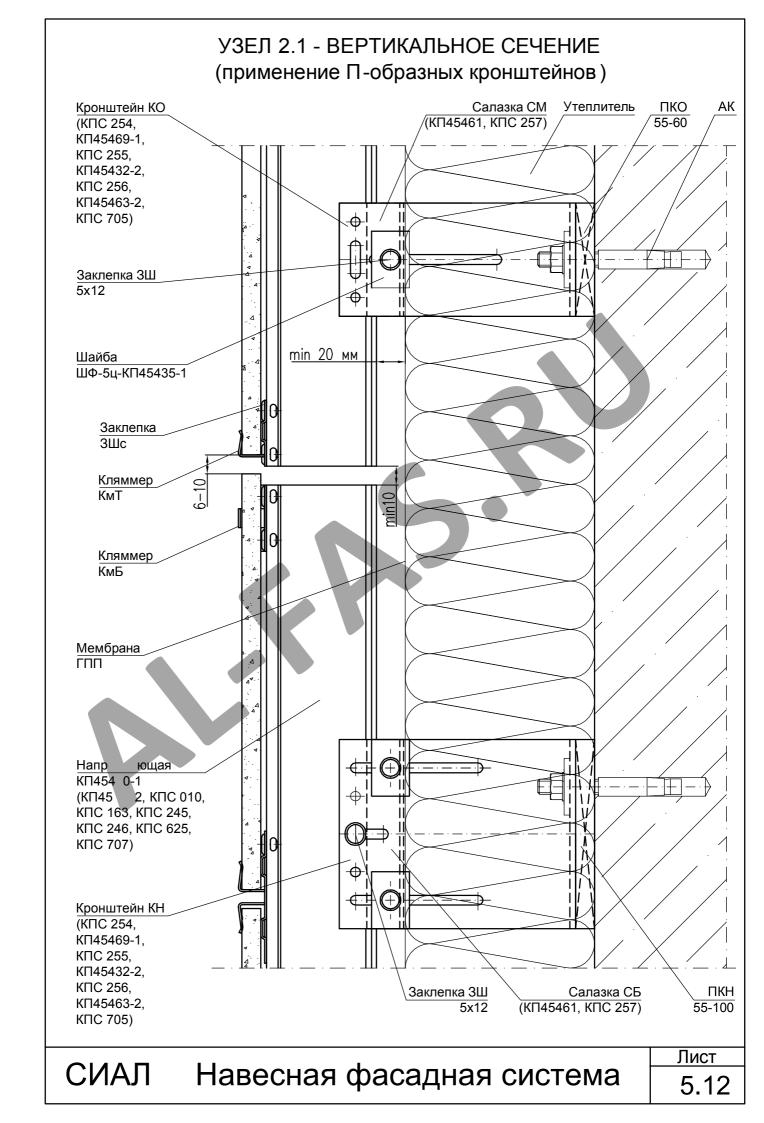


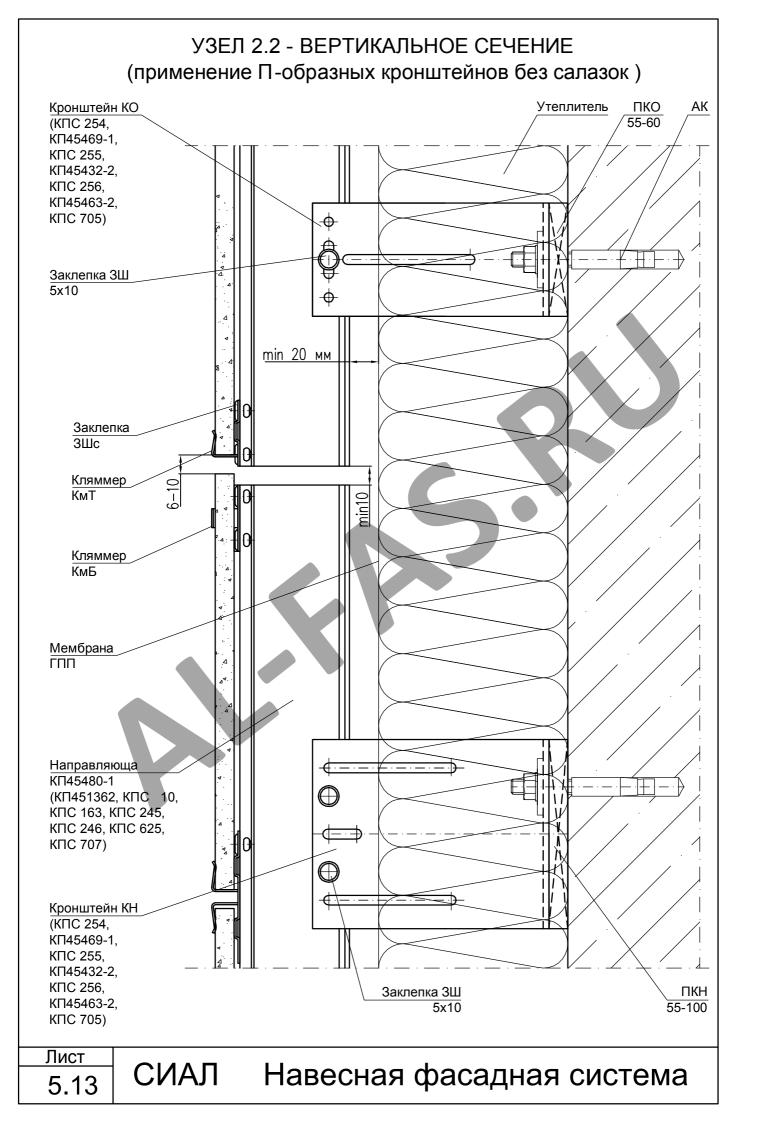

СИАЛ Навесная фасадная система

<u>Лист</u>
5.10

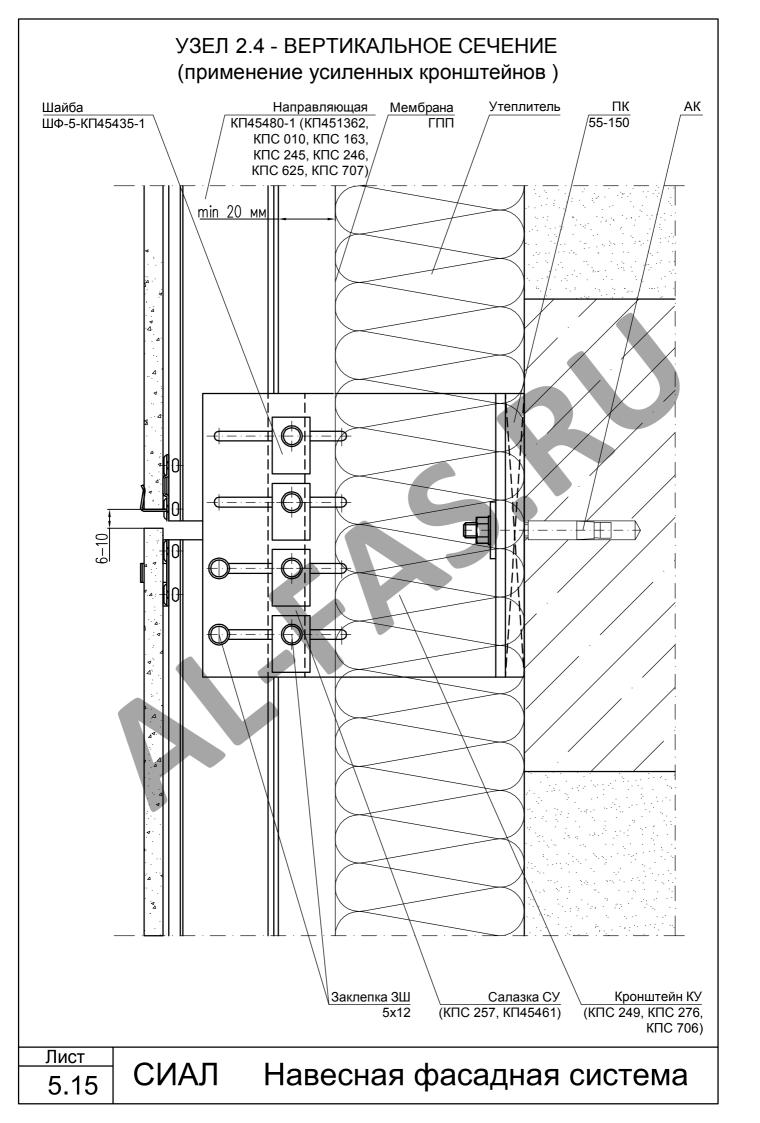
## ТАБЛИЦА ВЫЛЕТОВ НАПРАВЛЯЮЩИХ УСТАНОВЛЕННЫХ НА П-ОБРАЗНЫХ КРОНШТЕЙНАХ , ММ

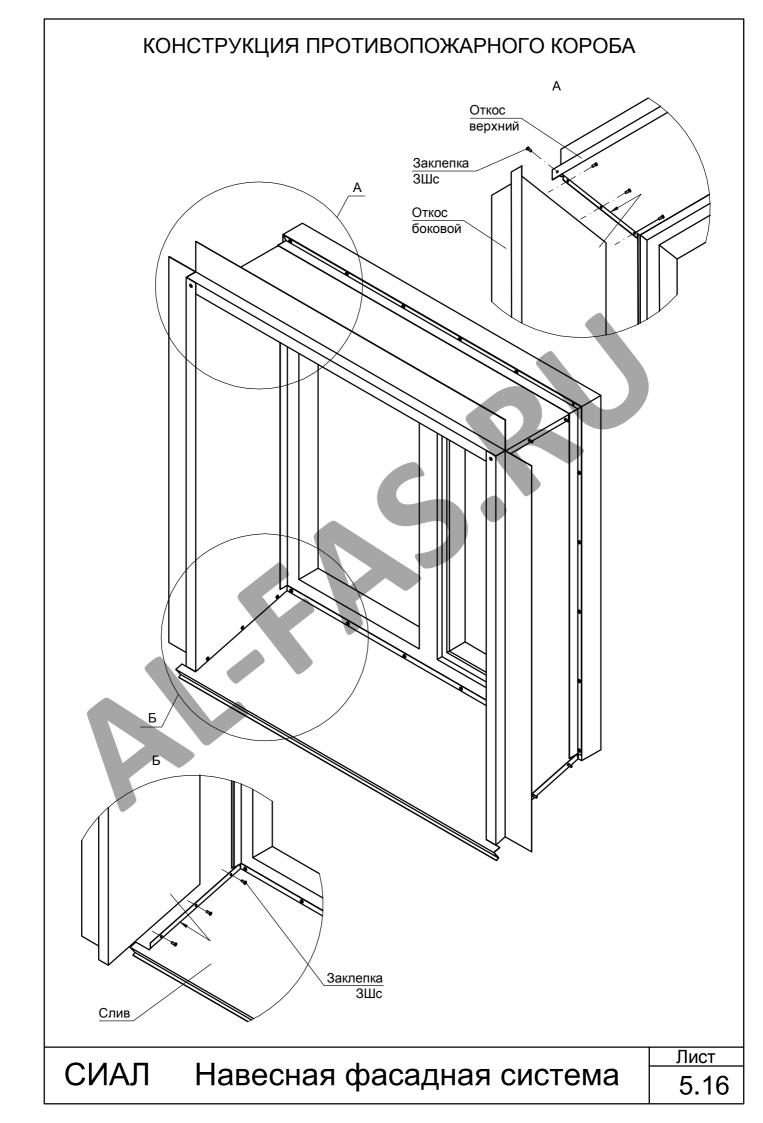






| Mapara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | Шифр | <del></del> | 8    |      |      |      |      |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-------------|------|------|------|------|------|------|------|
| KH (KO)-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      | 480-        | 136  | 010  | 163  |      | 246  |      |      |
| KH (KO)-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Марка         |      | ∏45         | .⊓45 | KIIC | KIIC | KIIC | KIIC | KIIC | KIIC |
| KTIC 254         max         98         107         120         140         145         165         101         9           KH (KO)-90         min         98         107         118         138         143         163         23         92           KH (KO)-125         min         133         142         153         173         178         98         158         127           KH (KO)-160         min         168         177         188         203         208         228         166         164           KH (KO)-160         min         168         177         188         208         213         1         162           KH (KO)-180         min         168         177         188         208         213         1         162           KH (KO)-180         min         188         197         208         28         233         253         213         182           KH (KO)-205         min         213         222         253         25         278         238         207           KH (KO)-240         min         248         257         28         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •             | min  |             |      |      |      |      |      |      |      |
| KH (KO)-90   min   98   107   118   138   143   163   23   32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` ′           |      |             |      |      |      |      |      |      |      |
| KITH45469-1   max   128   137   148   168   173   193   129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      |             |      |      |      |      |      | _    |      |
| He   He   He   He   He   He   He   He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |      |             |      |      |      |      |      | 23   |      |
| KTIC 255         max         163         172         183         203         208         228         166         164           KH (KO)-160         min         168         177         188         208         213         4         162           KH (KO)-160         min         188         207         218         23         243         263         201         199           KH (KO)-180         min         188         197         208         28         233         253         213         182           KH (KO)-256         max         218         217         238         2         2         283         221         219           KH (KO)-205         min         213         222         253         25         278         238         207           KH (KO)-240         min         248         257         28         288         293         313         273         242           KH (KO)-240         min         248         257         28         288         293         313         273         242           KH (KO)-240         min         248         257         29         318         323         343         281 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>150</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      |             |      |      |      |      |      | 150  |      |
| KH (KO)-160 min 168 177 188 208 213 1 162 KΠ45432-2 max 198 207 218 23 243 263 201 199 KH (KO)-180 min 188 197 208 28 233 253 213 182 KH (KO)-205 max 218 217 238 2 2 263 221 219 max 243 242 63 83 288 308 246 244 KH (KO)-240 min 248 257 28 288 293 313 131 129 KC-125 min 13 142 153 173 178 198 158 127 KΠC 255 x 163 172 183 203 208 228 166 164 KG 0 min 8 177 188 208 213 233 193 162 KG 240 min 248 257 268 288 293 313 273 242 KG 0 min 8 177 188 208 213 233 193 162 KG 240 min 188 197 208 228 233 253 213 182 KG 240 min 248 257 28 288 293 313 273 242 KG 0 min 8 177 188 208 213 233 193 162 KG 255 max 218 217 238 228 233 253 213 182 KG 0 min 8 177 188 208 213 233 193 162 KG 45432 max 198 207 218 238 243 263 201 199 80 KG 256 max 218 217 238 258 263 283 221 219 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 168 177 188 208 213 233 193 162 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 max 278 277 298 318 323 343 281 279 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 min 248 257 268 288 293 313 273 242 KG 240 max 278 277 298 318 323 343 281 279 Max 278 278 278 278 278 278 278 278 278 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |      |             |      |      |      |      |      | _    |      |
| KΠ45432-2   max   198   207   218   23   243   263   201   199     KH (KO)-180   min   188   197   208   28   233   253   213   182     KΠC 256   max   218   217   238   2   2   283   221   219     KH (KO)-205   min   213   222   253   25   278   238   207     KΠ45463-2   max   243   242   63   83   288   308   246   244     KH (KO)-240   min   248   257   28   288   293   313   273   242     KC-90   min   98   7   118   138   143   163   123   92     KΠ45469-1   max   128   13   148   168   173   193   131   129     KC-125   min   13   142   153   173   178   198   158   127     KC 0   min   8   177   188   208   213   233   193   162     K 0   Min   188   197   208   228   233   253   213   182     KC 125   min   138   147   238   238   243   263   201   199     R 0   min   188   197   208   228   233   253   213   182     KC 125   max   218   217   238   258   263   283   221   219     KC 205   min   213   222   233   253   258   278   238   207     KΠ45463-2   max   243   242   263   283   288   308   246   244     KC 240   min   248   257   268   288   293   313   273   242     KC 240   min   248   257   268   288   293   313   273   242     KY 160   min   168   177   188   208   213   233   193   162     KY 205   min   213   222   233   253   258   278   238   207     KY 205   min   213   222   233   253   258   278   238   207     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268   288   293   313   273   242     KY 240   min   248   257   268  |               |      |             |      |      |      |      | 220  |      |      |
| Heat   Heat |               |      |             |      |      |      |      | 263  |      |      |
| KΓΙC 256         max         218         217         238         2         2         283         221         219           KH (KO)-205         min         213         222         253         25         278         238         207           KΠ45463-2         max         243         242         63         83         288         308         246         244           KH (KO)-240         min         248         257         2         8         288         293         313         273         242           KC 90         min         248         257         29         318         323         343         281         279           KC 90         min         98         7         118         138         143         163         123         92           KC1456         min         13         142         153         173         178         198         158         127           KC125         min         13         142         153         173         178         198         158         127           KC125         min         13         142         153         173         178         198         158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |             |      |      |      |      |      |      |      |
| KH (KO)-205 MIN         min         213         222         253         25         278         238         207           KΠ45463-2 max         243         242         63         83         288         308         246         244           KH (KO)-240 KΠC 705         min         248         257         28         288         293         313         273         242           KC-90 min         98         7         118         138         143         163         123         92           KC-90 min         98         7         118         138         143         163         123         92           KC-125 min         13         142         153         173         178         198         158         127           KC 125 kGC 255         x         163         172         183         203         208         228         166         164           KC 0 kG 0 min         8         177         188         208         213         233         193         162           KC 10 kG 0 min         188         197         208         228         233         253         213         182           KG 1256         max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |             |      |      |      |      |      |      |      |
| KΠ45463-2         max         243         242         63         83         288         308         246         244           KH (KO)-240 MID (KIC) 240                                                                                                                               |               |      |             |      | 250  |      |      |      |      |      |
| KH (KO)-240 KΠC 705         min ax 278         257         2 8         288         293         313         273         242 Z79           KC-90 KC-90 KΠ45469-1 max         min 98         7         118         138         143         163         123         92 MI           KC-125 kΠC 255         min 13         142         153         173         178         198         158         127 MI           KC 0 kG min 8         177         188         208         213         233         193         162 MI           KC 0 kG min 8         177         188         208         213         233         193         162 MI           KC 10 kG max         198         207         218         238         243         263         201         199           80 kG min 188         197         208         228         233         253         213         182           KC 205 kG max         218         217         238         258         263         283         221         219           KC-205 kG min 213         222         233         253         258         278         238         207           KG-240 kG max         248         257         268         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      |             |      | 63   |      |      |      |      |      |
| KΠC 705         max         278         277         29         318         323         343         281         279           KC-90         min         98         7         118         138         143         163         123         92           KC-90         min         128         13         148         168         173         193         131         129           KC-125         min         13         142         153         173         178         198         158         127           KC 0         min         8         177         188         203         208         228         166         164           KC 0         min         8         177         188         208         213         233         193         162           K 45432         max         198         207         218         238         243         263         201         199           80         min         188         197         208         228         233         253         213         182           KC 205         min         213         222         233         253         258         278         238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KI I (KO) 240 |      |             |      |      |      |      |      |      |      |
| KC-90<br>KΠ45469-1         min<br>max         98         7         118         138         143         163         123         92           KC-125<br>KΠC 255         min<br>MID         13         142         153         173         178         198         158         127           KC 0<br>K 45432         min<br>Max         198         207         218         238         243         263         201         199           80<br>KΠ 256         min<br>Min<br>Min         188         197         208         228         233         253         213         182           KC-205<br>KΠ45463-2         min<br>Min         213         222         233         258         263         283         221         219           KC-205<br>KΠ45463-2         min<br>Min         243         242         263         283         288         308         246         244           KC-205<br>KΠ45463-2         min         243         242         263         283         288         308         246         244           KC-240<br>KΠC 705         min         248         257         268         288         293         313         273         242           KY-160<br>KΠC 249         min         168         177 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      |             |      |      |      |      |      |      |      |
| KΠ45469-1         max         128         13         148         168         173         193         131         129           KC-125         min         13         142         153         173         178         198         158         127           KПС 255         x         163         172         183         203         208         228         166         164           KC 0         min         8         177         188         208         213         233         193         162           KC 45432         max         198         207         218         238         243         263         201         199           80         min         188         197         208         228         233         253         213         182           KП 256         max         218         217         238         258         263         283         221         219           KC-205         min         213         222         233         253         258         278         238         207           KП 45463-2         max         243         242         263         283         288         308         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KC 00         |      |             |      |      |      |      |      |      |      |
| KC-125         min         13         142         153         173         178         198         158         127           KC 0         min         8         172         183         203         208         228         166         164           KC 0         min         8         177         188         208         213         233         193         162           K 45432         max         198         207         218         238         243         263         201         199           80         min         188         197         208         228         233         253         213         182           KII         256         max         218         217         238         258         263         283         221         219           KC-205         min         213         222         233         253         258         278         238         207           KIT45463-2         max         243         242         263         283         288         308         246         244           KC-240         min         248         257         268         288         293         313 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |             |      |      |      |      |      |      |      |
| KПС 255         x         163         172         183         203         208         228         166         164           KC 0         min         8         177         188         208         213         233         193         162           K 45432         max         198         207         218         238         243         263         201         199           80 KП 256         min         188         197         208         228         233         253         213         182           KП 256         max         218         217         238         258         263         283         221         219           KC-205 KП45463-2         min         213         222         233         253         258         278         238         207           KR145463-2         max         243         242         263         283         288         308         246         244           KC-240 MID 705         max         278         277         298         318         323         343         281         279           KY-160 KIC 249         min         168         177         188         208         213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KC 125        |      |             |      |      |      |      |      |      |      |
| KC         min         8         177         188         208         213         233         193         162           K         45432         max         198         207         218         238         243         263         201         199           80         min         188         197         208         228         233         253         213         182           KIT         256         max         218         217         238         258         263         283         221         219           KC-205         min         213         222         233         253         258         278         238         207           KIT45463-2         max         243         242         263         283         288         308         246         244           KC-240         min         248         257         268         288         293         313         273         242           KY-160         min         168         177         188         208         213         233         193         162           KY-205         min         213         222         233         253         258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      |             |      |      |      |      |      |      |      |
| K         45432         max         198         207         218         238         243         263         201         199           80         min         188         197         208         228         233         253         213         182           KC1         256         max         218         217         238         258         263         283         221         219           KC-205         min         213         222         233         253         258         278         238         207           KП45463-2         max         243         242         263         283         288         308         246         244           KC-240         min         248         257         268         288         293         313         273         242           KC-240         min         248         257         268         288         293         313         273         242           KY-160         min         168         177         188         208         213         233         193         162           KY-249         max         198         207         218         238         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KC 0          |      |             |      |      |      |      |      |      |      |
| 80         min         188         197         208         228         233         253         213         182           KCI         256         max         218         217         238         258         263         283         221         219           KC-205         min         213         222         233         253         258         278         238         207           KП45463-2         max         243         242         263         283         288         308         246         244           KC-240         min         248         257         268         288         293         313         273         242           KTIC 705         max         278         277         298         318         323         343         281         279           KY-160         min         168         177         188         208         213         233         193         162           KTIC 249         max         198         207         218         238         243         263         201         199           KY-205         min         213         222         233         253         258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |      |             |      |      |      |      |      |      |      |
| KΠ         256         max         218         217         238         258         263         283         221         219           KC-205         min         213         222         233         253         258         278         238         207           KП45463-2         max         243         242         263         283         288         308         246         244           KC-240         min         248         257         268         288         293         313         273         242           KПС 705         max         278         277         298         318         323         343         281         279           KУ-160         min         168         177         188         208         213         233         193         162           КПС 249         max         198         207         218         238         243         263         201         199           КУ-205         min         213         222         233         253         258         278         238         207           КПС 276         max         243         242         263         283         288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80            |      |             |      |      |      |      |      |      |      |
| KΠ45463-2         max         243         242         263         283         288         308         246         244           KC-240         min         248         257         268         288         293         313         273         242           KПС 705         max         278         277         298         318         323         343         281         279           KУ-160         min         168         177         188         208         213         233         193         162           КПС 249         max         198         207         218         238         243         263         201         199           КУ-205         min         213         222         233         253         258         278         238         207           КПС 276         max         243         242         263         283         288         308         246         244           КУ-240         min         248         257         268         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |      |             | 217  |      | 258  | 263  |      | 221  | 219  |
| KΠ45463-2         max         243         242         263         283         288         308         246         244           KC-240<br>КПС 705         min         248         257         268         288         293         313         273         242           KПС 705         max         278         277         298         318         323         343         281         279           KУ-160<br>КПС 249         min         168         177         188         208         213         233         193         162           KУ-249         max         198         207         218         238         243         263         201         199           КУ-205<br>КПС 276         min         213         222         233         253         258         278         238         207           КУ-240<br>КГО 700         min         248         257         268         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KC-205        |      |             |      |      | 253  | 258  |      |      | 207  |
| KΠC 705         max         278         277         298         318         323         343         281         279           KУ-160         min         168         177         188         208         213         233         193         162           КПС 249         max         198         207         218         238         243         263         201         199           КУ-205         min         213         222         233         253         258         278         238         207           КПС 276         max         243         242         263         283         288         308         246         244           КУ-240         min         248         257         268         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | max  | 243         |      |      |      |      |      |      |      |
| KΠC 705         max         278         277         298         318         323         343         281         279           KУ-160         min         168         177         188         208         213         233         193         162           КПС 249         max         198         207         218         238         243         263         201         199           КУ-205         min         213         222         233         253         258         278         238         207           КПС 276         max         243         242         263         283         288         308         246         244           КУ-240         min         248         257         268         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KC-240        | min  | 248         | 257  | 268  | 288  | 293  | 313  | 273  | 242  |
| KΠC 249       max       198       207       218       238       243       263       201       199         KY-205       min       213       222       233       253       258       278       238       207         KПС 276       max       243       242       263       283       288       308       246       244         KY-240       min       248       257       268       288       293       313       273       242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      | 278         |      |      |      |      |      |      | 279  |
| KΠC 249         max         198         207         218         238         243         263         201         199           KУ-205         min         213         222         233         253         258         278         238         207           КПС 276         max         243         242         263         283         288         308         246         244           KУ-240         min         248         257         268         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KY-160        | min  | 168         | 177  | 188  | 208  | 213  | 233  | 193  | 162  |
| KΠC 276         max         243         242         263         283         288         308         246         244           KУ-240         min         248         257         268         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |      |             | 207  |      | 238  |      |      |      | 199  |
| KΠC 276         max         243         242         263         283         288         308         246         244           KУ-240         min         248         257         268         288         293         313         273         242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | КУ-205        | min  | 213         | 222  | 233  | 253  | 258  | 278  | 238  | 207  |
| Ky-240 min 248 257 268 288 293 313 273 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      |             | 242  | 263  | 283  | 288  |      | 246  | 244  |
| KEO 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | КУ-240        |      | 248         | 257  | 268  | 288  | 293  | 313  | 273  | 242  |
| MIP 799   max   278   277   298   318   323   343   281   279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | КПС 706       | max  | 278         | 277  | 298  | 318  | 323  | 343  | 281  | 279  |

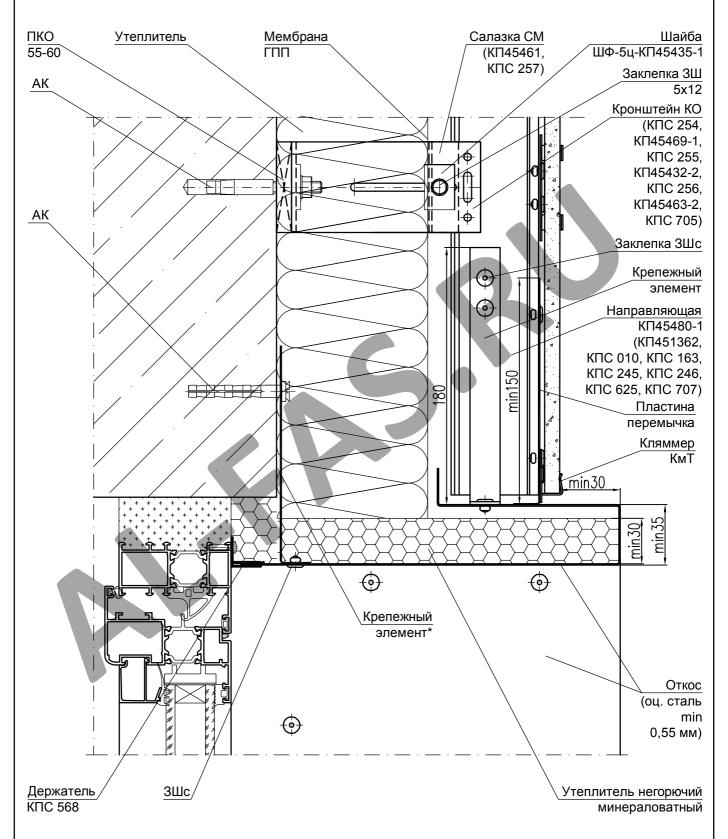
Лист


5.11


СИАЛ Навесная фасадная система






#### УЗЕЛ 2.3 - ВЕРТИКАЛЬНОЕ СЕЧЕНИЕ (применение направляющих КП 45480-1, КПС 707 с закладной соединительной КПС 579) Заклепка ЗШс 4,8x8 A Заклепка ЗШс 200 Кляммер КмТ Кляммер КмБ min 20 MM Закладная соединительная KПС 579 Направляющая КП45480-1 (KПС 707) A - A Направляющая Закладная КП45480-1 соединительная КПС 579 (KПС 707) Заклепка ЗШс 4,8x8 Лист СИАЛ Навесная фасадная система 5.14

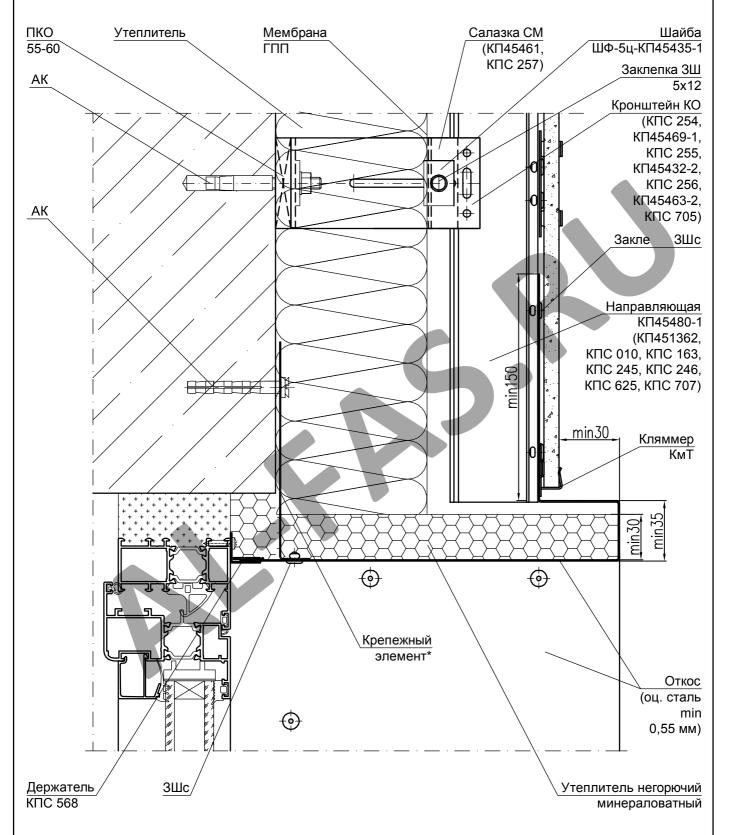




# ОБЛАСТЬ ПОВЫШЕННОЙ ПОЖАРНОЙ ОПАСНОСТИ <u>min300</u> - область повышенной пожарной опасности Лист СИАЛ Навесная фасадная система 5.17

### УЗЕЛ 3.1 - ВЕРХНИЙ ОТКОС ОКНА (откос из оц. стали)




Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

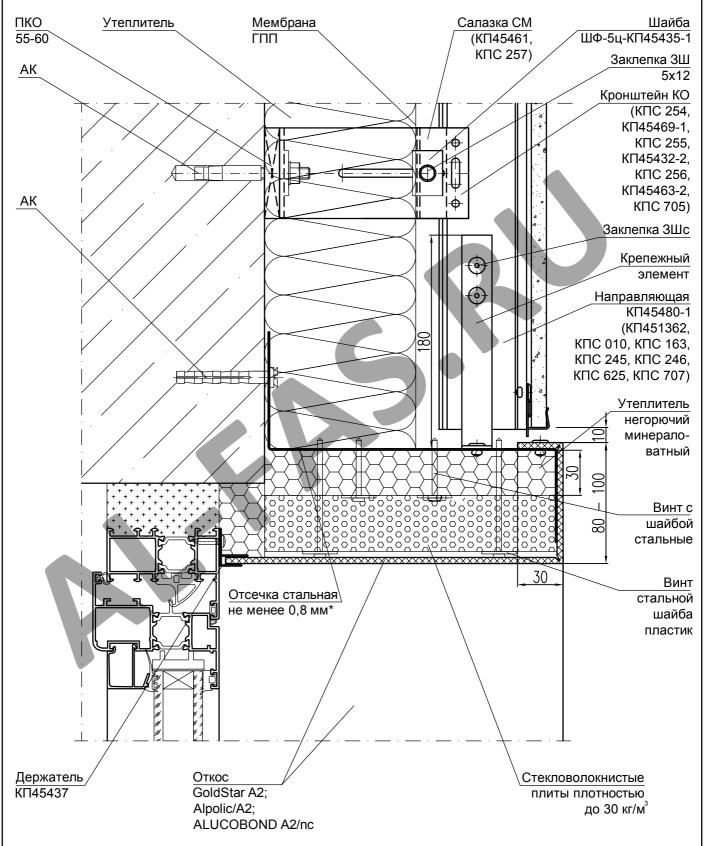
#### СИАЛ Навесная фасадная система

<u>Лист</u> 5.18

<sup>\* -</sup> элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

### УЗЕЛ 3.2 - ВЕРХНИЙ ОТКОС ОКНА (откос из оц. стали совмещенный с пластиной перемычкой )




Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

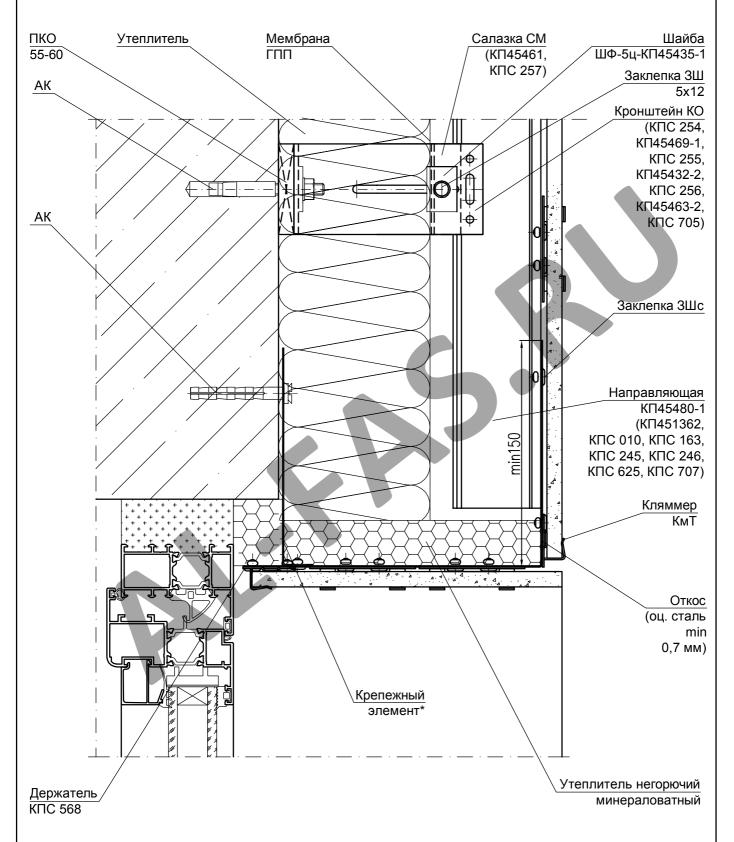
<u>Лист</u> 5.19

СИАЛ

<sup>\* -</sup> элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

# УЗЕЛ 3.3 - ВЕРХНИЙ ОТКОС ОКНА (вариант откоса из ALUCOBOND A2 с внутренним коробом из оц. стали)



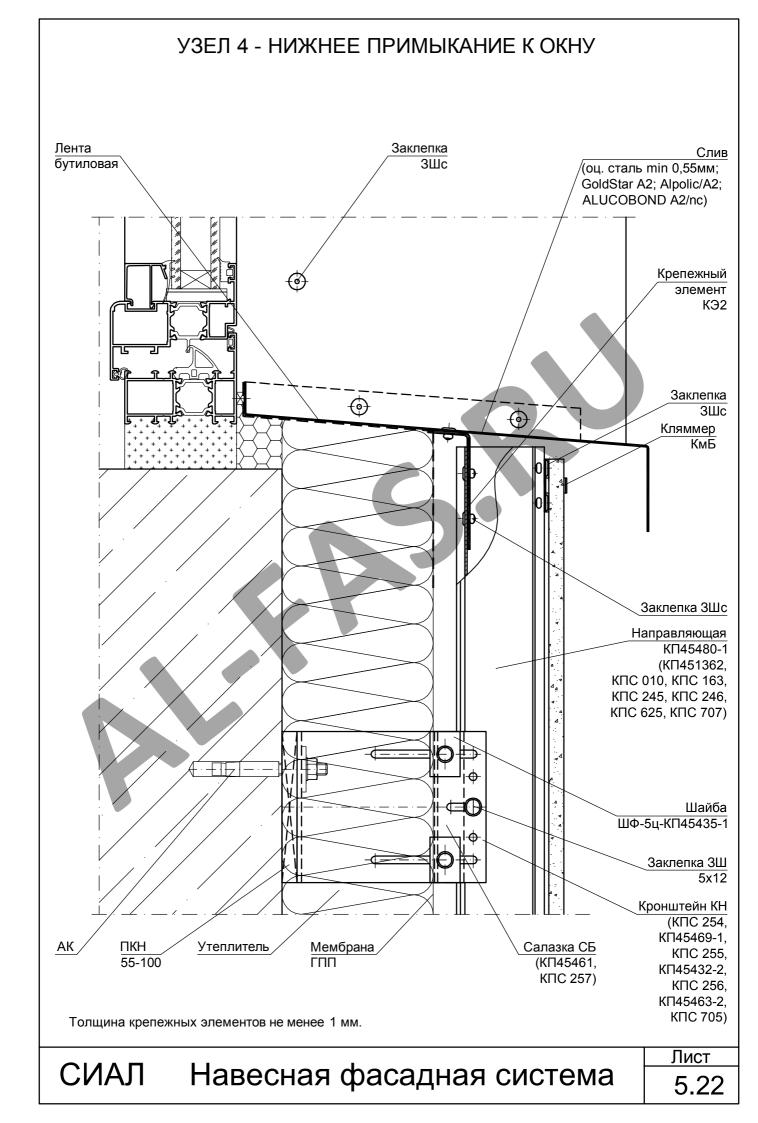

Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

СИАЛ Навесная фасадная система

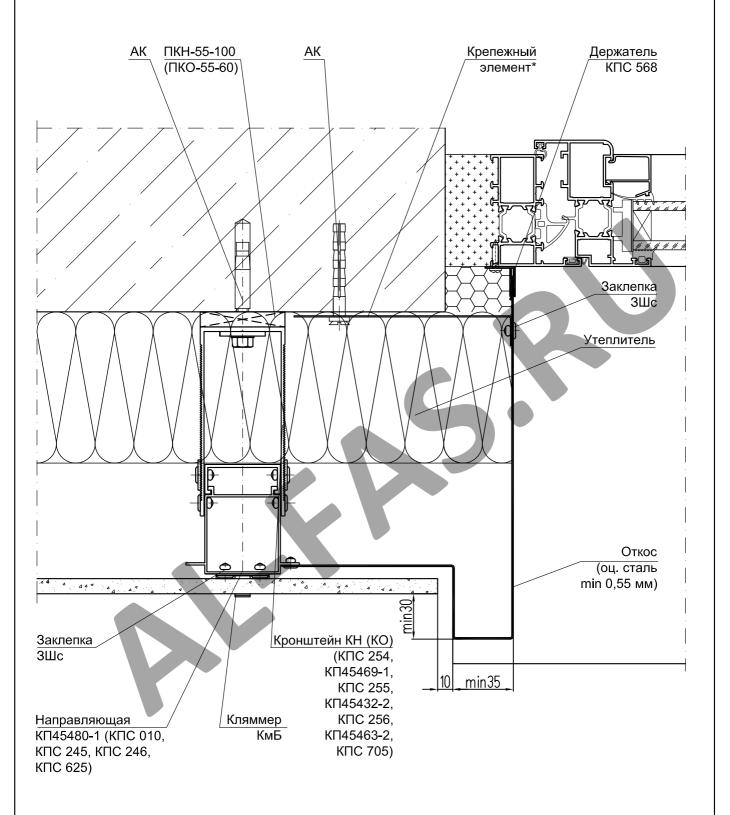
<u>Лист</u>

5.20

## УЗЕЛ 3.4 - ВЕРХНИЙ ОТКОС ОКНА (откос из керамогранитных плит )




Материал, толщину и шаг крепления элементов противопожарного короба, колличество кляммеров, в том числе для крепления плитки на откосах, выбирать в соответствии с экспертным заключением ЦНИИСК им . В. А. Кучеренко.

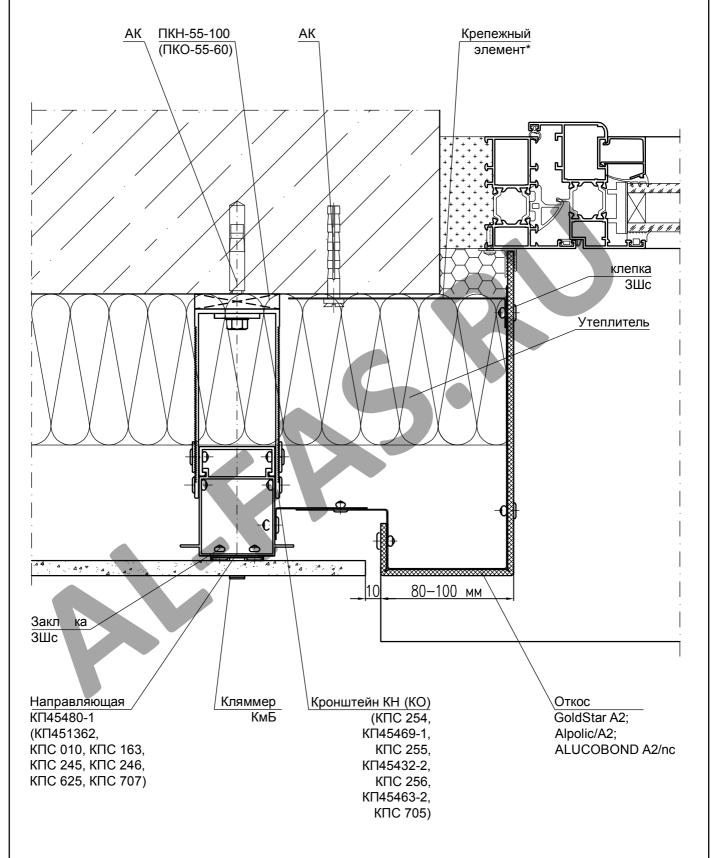

\* - элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

<u>Лист</u>
5.21

СИАЛ



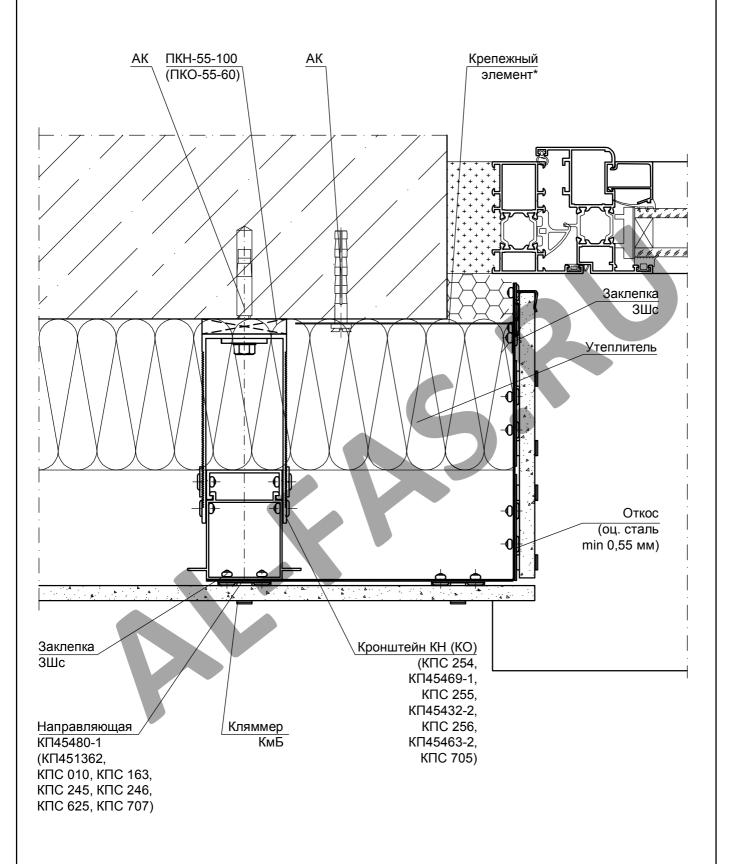
#### УЗЕЛ 5.1 - БОКОВОЙ ОТКОС ОКНА (откос из оц. стали)




Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

Лист 5.23

<sup>\* -</sup> элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

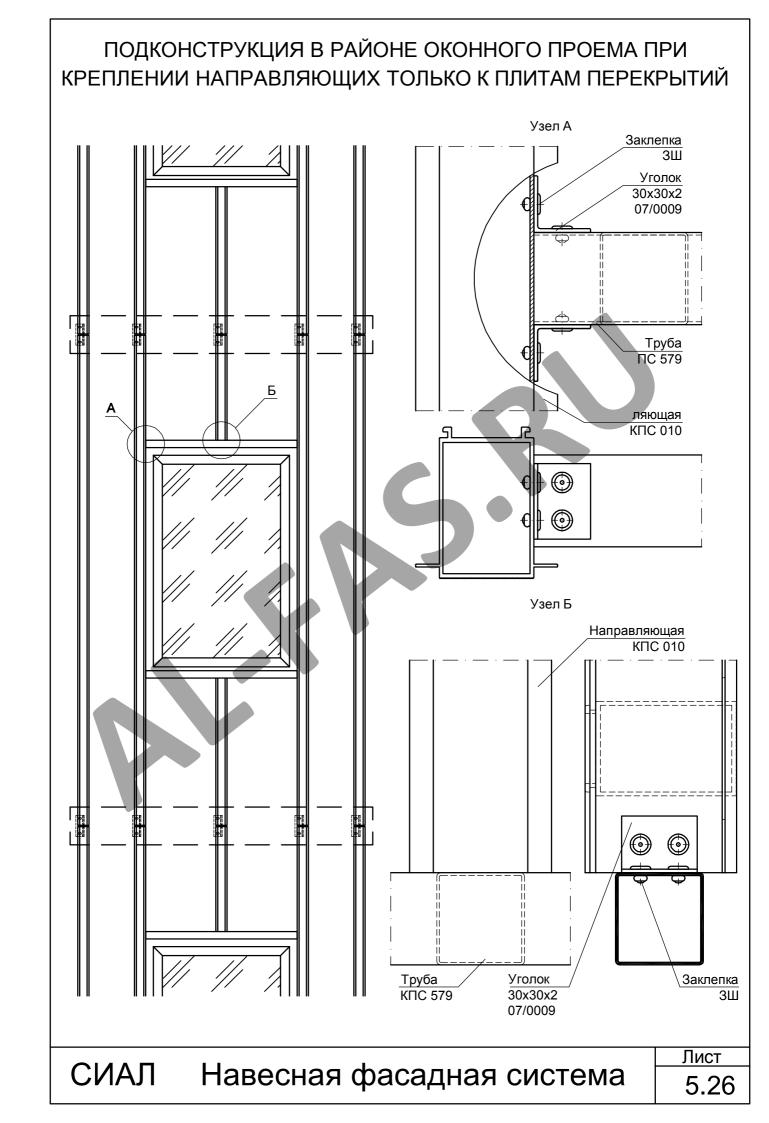

# УЗЕЛ 5.2 - БОКОВОЙ ОТКОС ОКНА (вариант откоса из ALUCOBOND A2 с внутренним коробом из оц. стали)

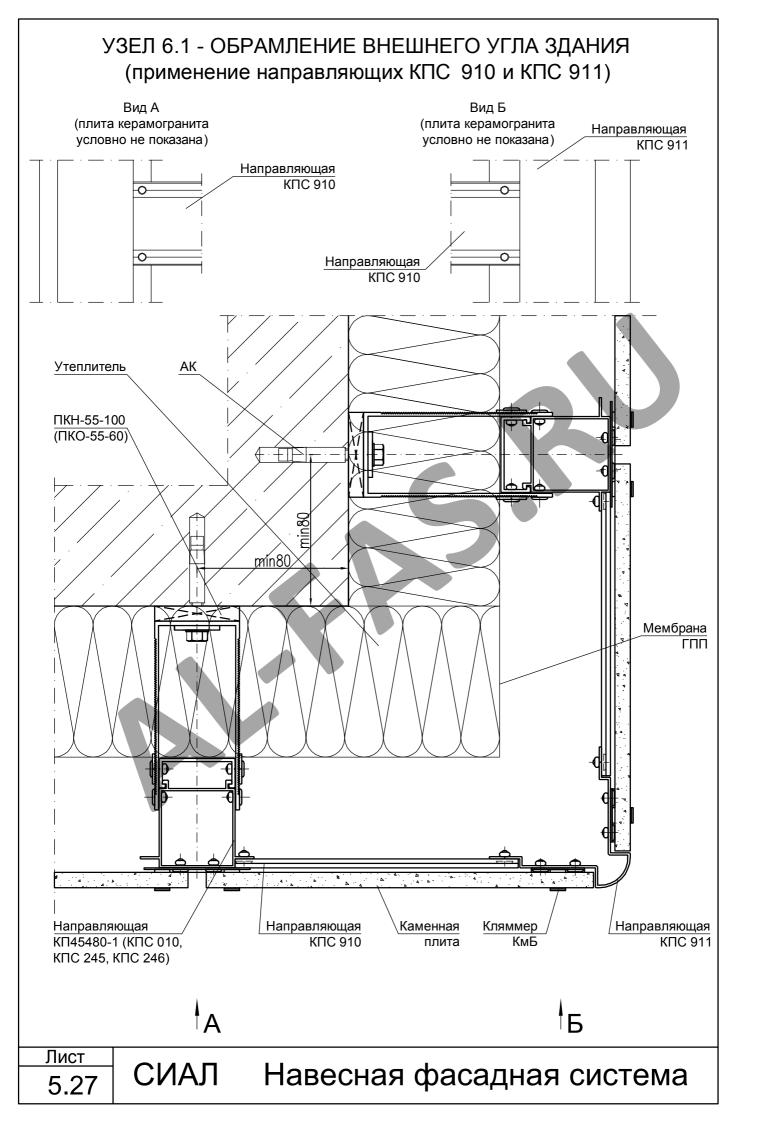


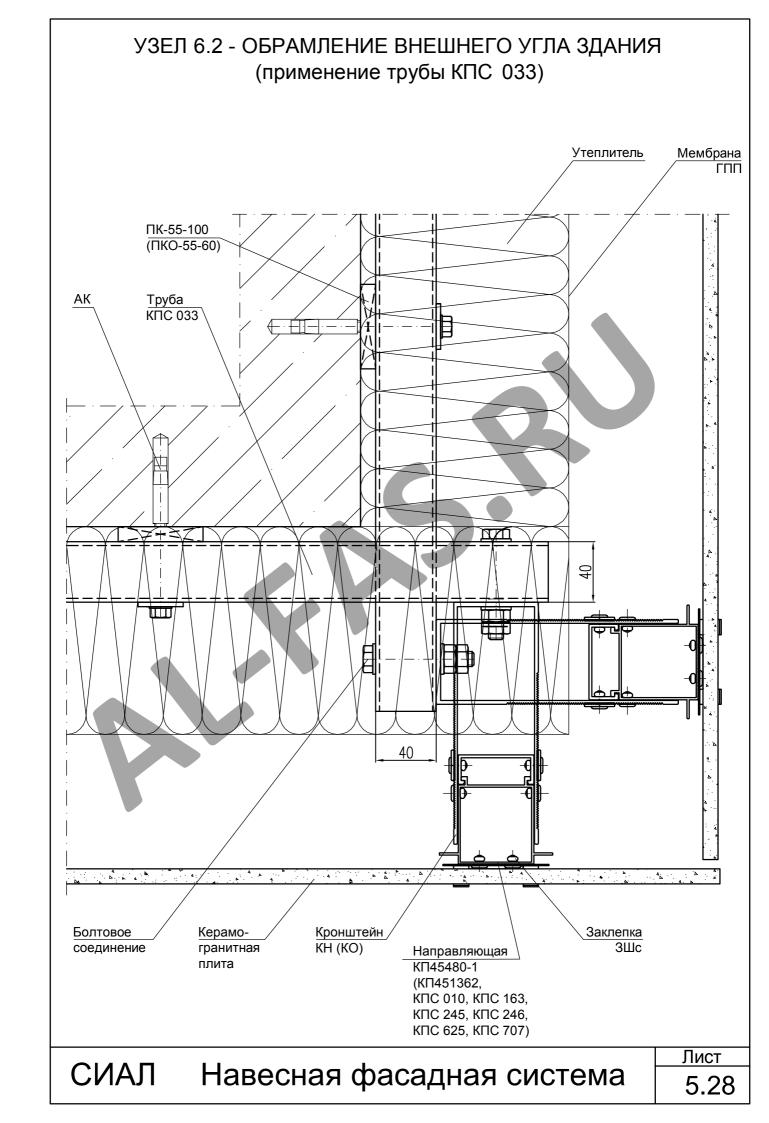
Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

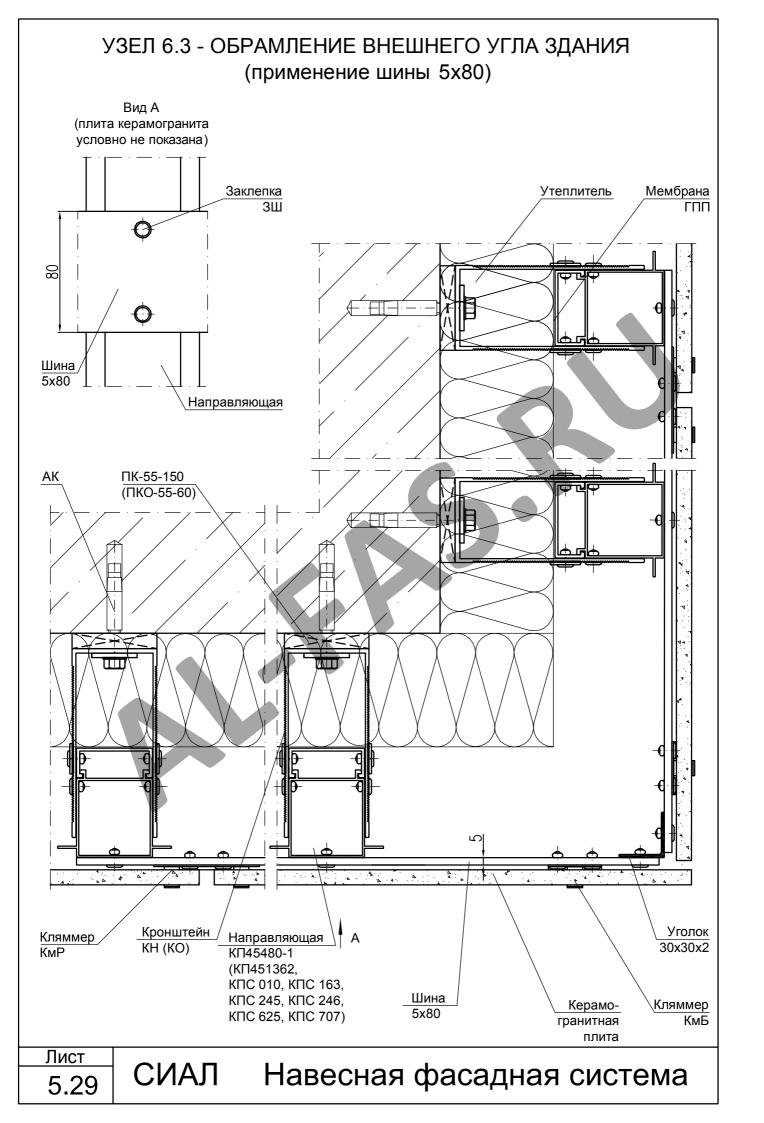
<sup>\* -</sup> элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

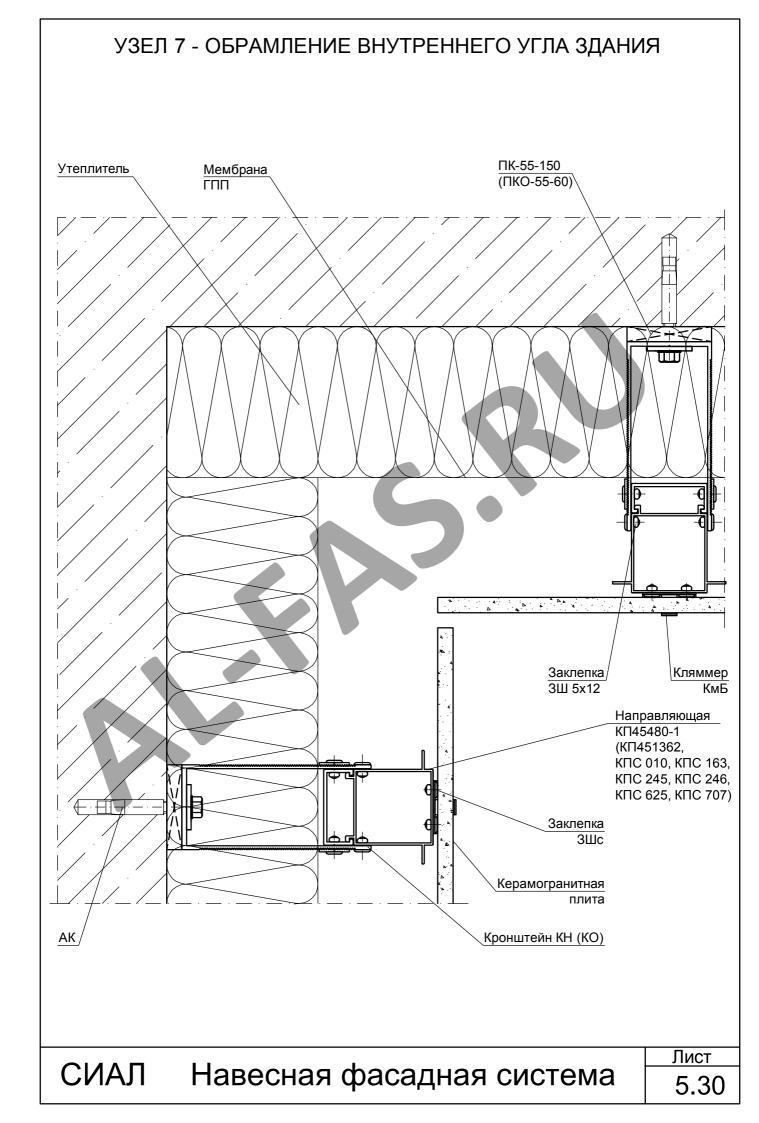
### УЗЕЛ 5.3 - БОКОВОЙ ОТКОС ОКНА (откос из керамогранитных плит )

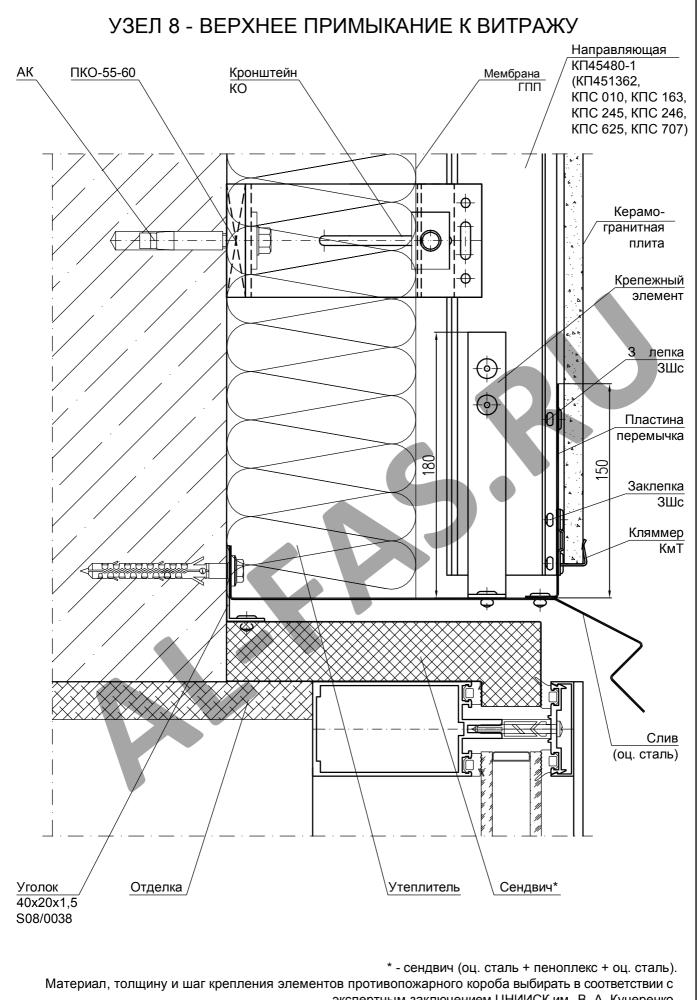




Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.


\* - элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм


Лист


5.25



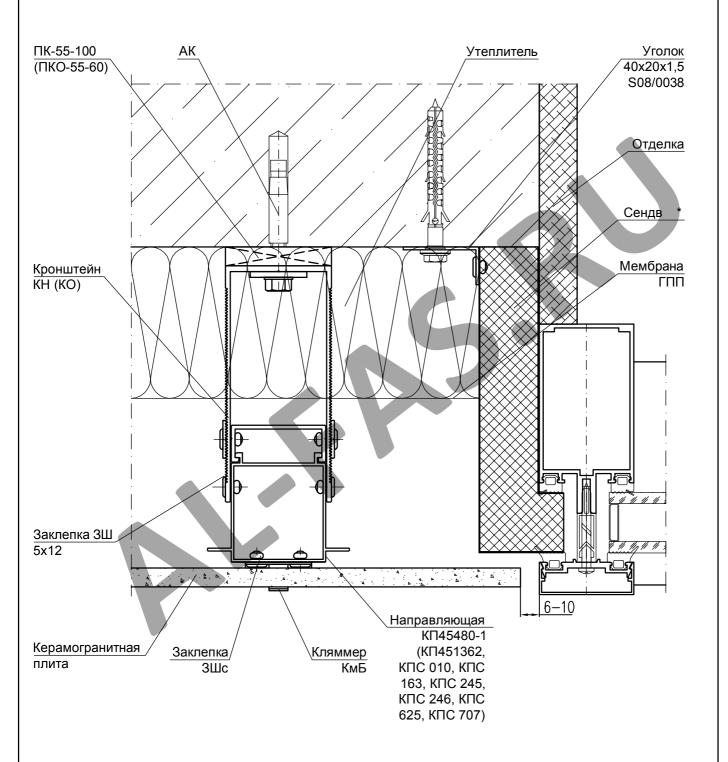












экспертным заключением ЦНИИСК им. В. А. Кучеренко.

Лист 5.31

СИАЛ

#### УЗЕЛ 9 - НИЖНЕЕ ПРИМЫКАНИЕ К ВИТРАЖУ Уголок Отделка Утеплитель Сендвич\* Мембрана 40x20x1,5 ГПП S08/0038 Слив (оц. сталь) Кляммер КмБ Заклепка ЗШс КерамоiФ гранитная плита Ф Направляющая КП45480-1 (KΠ451362, KΠC 010, KΠC 163, KΠC 245, KΠC 246, KΠC 625, KΠC 707) Заклепка ЗШ 5x12 ПК-55-100 ΑК Кронштейн КН \* - сендвич (оц. сталь + пеноплекс + оц. сталь). Лист СИАЛ Навесная фасадная система 5.32

#### УЗЕЛ 10.1 - БОКОВОЕ ПРИМЫКАНИЕ К ВИТРАЖУ



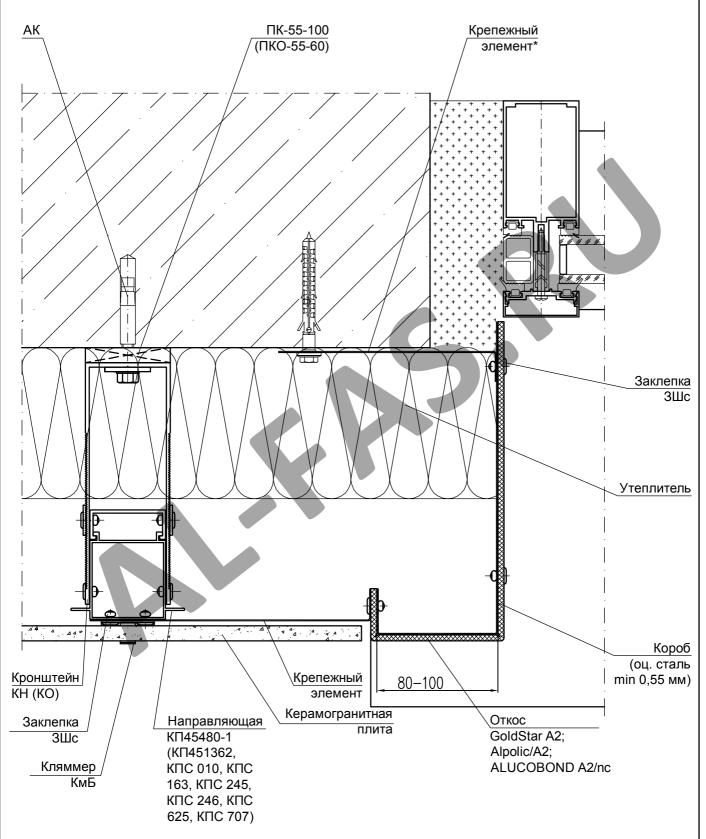

\* - сендвич (оц. сталь + пеноплекс + оц. сталь).

Лист **5.3**3

СИАЛ

#### УЗЕЛ 10.2 - БОКОВОЙ ОТКОС ВИТРАЖА УСТАНОВЛЕННОГО В ПРОЕМ

(откос из оц. стали)



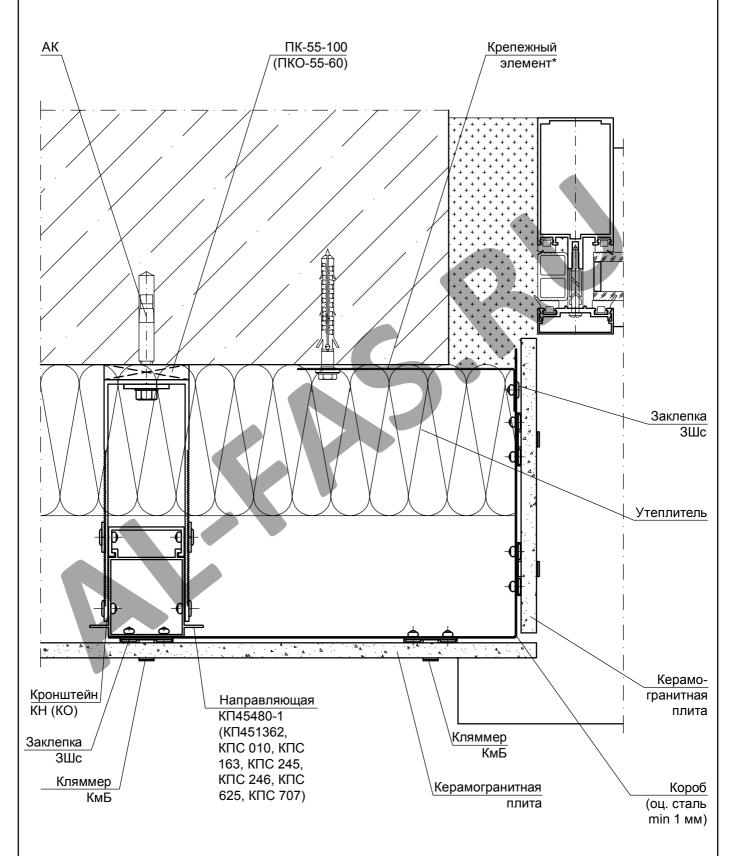

Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

\* - элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

СИАЛ Навесная фасадная система Лист

# УЗЕЛ 10.3 - БОКОВОЙ ОТКОС ВИТРАЖА УСТАНОВЛЕННОГО В ПРОЕМ (вариант откоса из ALUCOBOND A2 с внутренним коробом из оц. стали)




Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

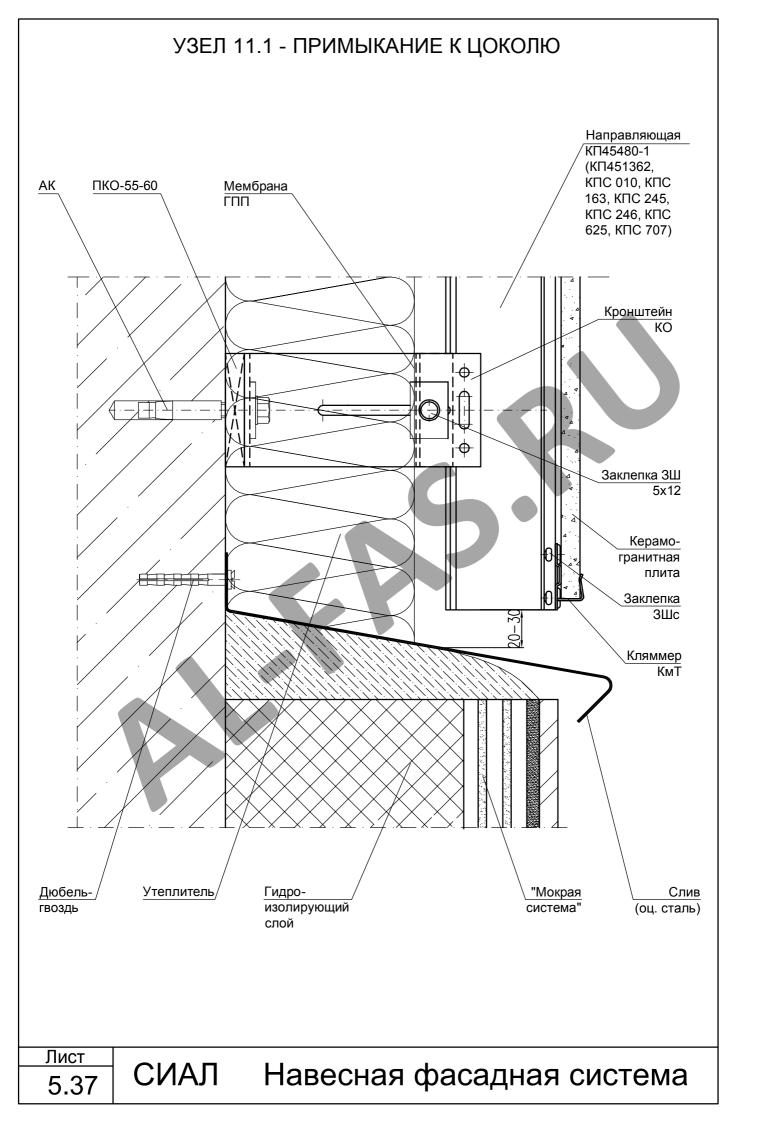
\* - элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

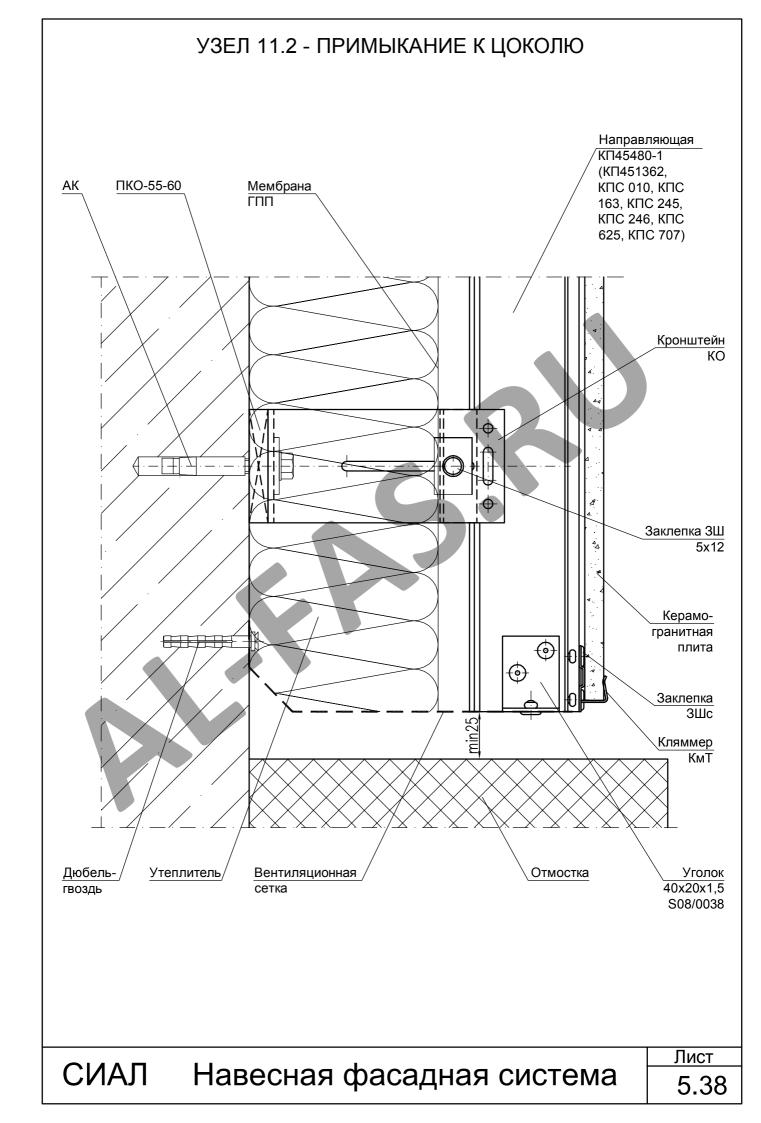
Лист **5.35** 

#### УЗЕЛ 10.4 - БОКОВОЙ ОТКОС ВИТРАЖА УСТАНОВЛЕННОГО В ПРОЕМ

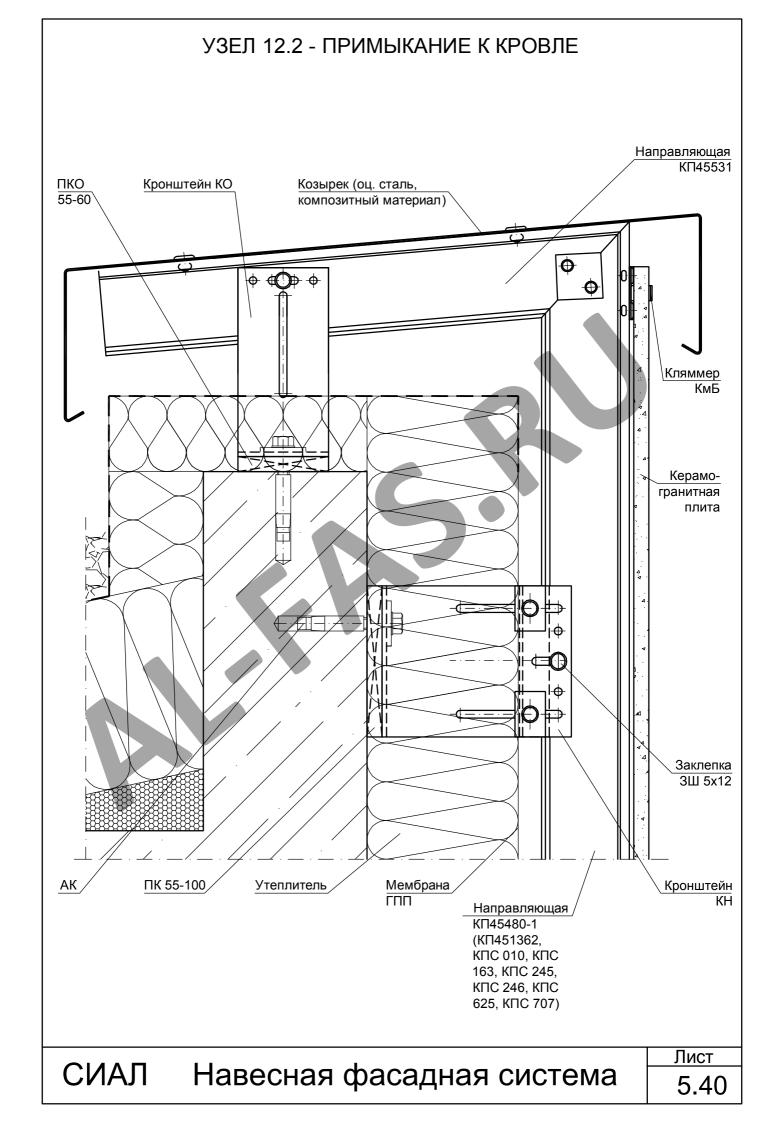
(откос из керамогранитных плит)

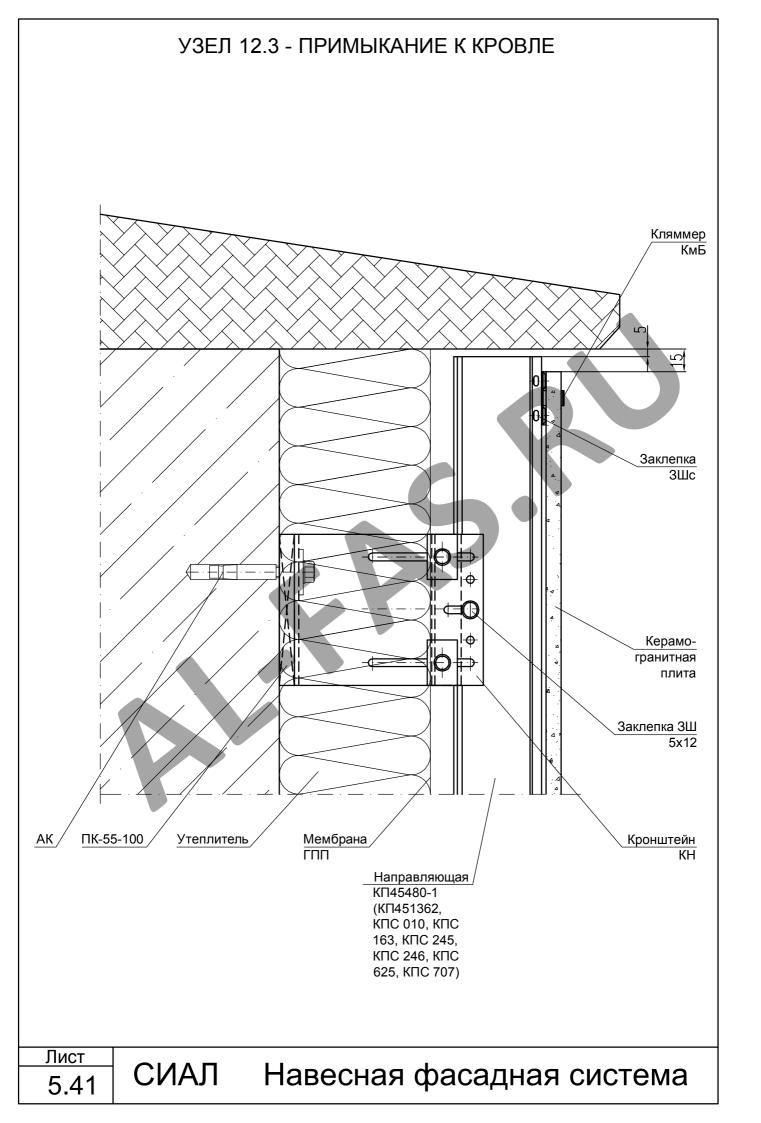


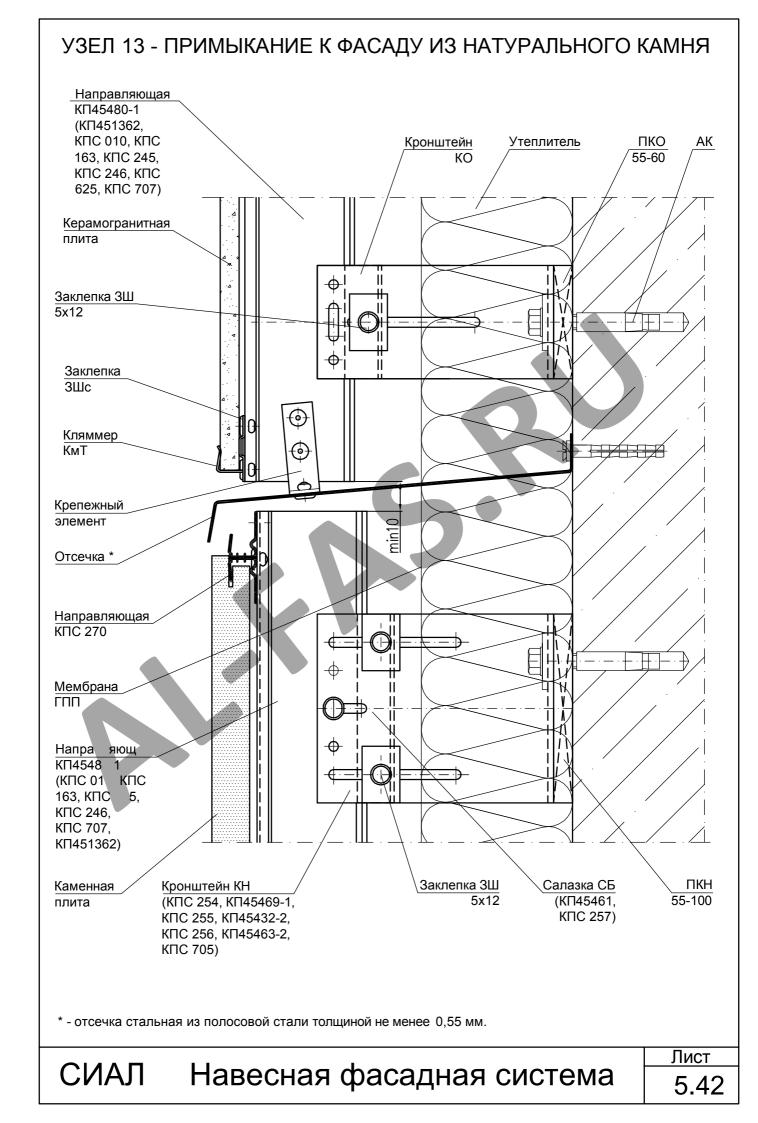

Материал, толщину и шаг крепления элементов противопожарного короба выбирать в соответствии с экспертным заключением ЦНИИСК им. В. А. Кучеренко.

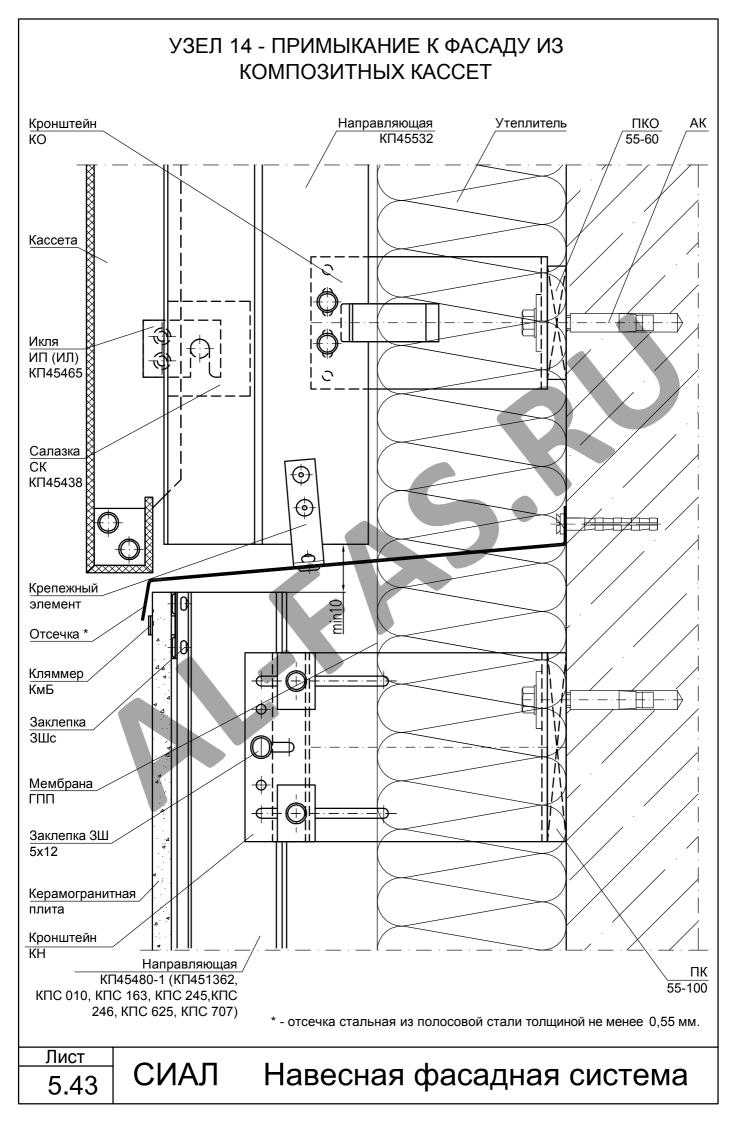

СИАЛ Навесная фасадная система

Лист

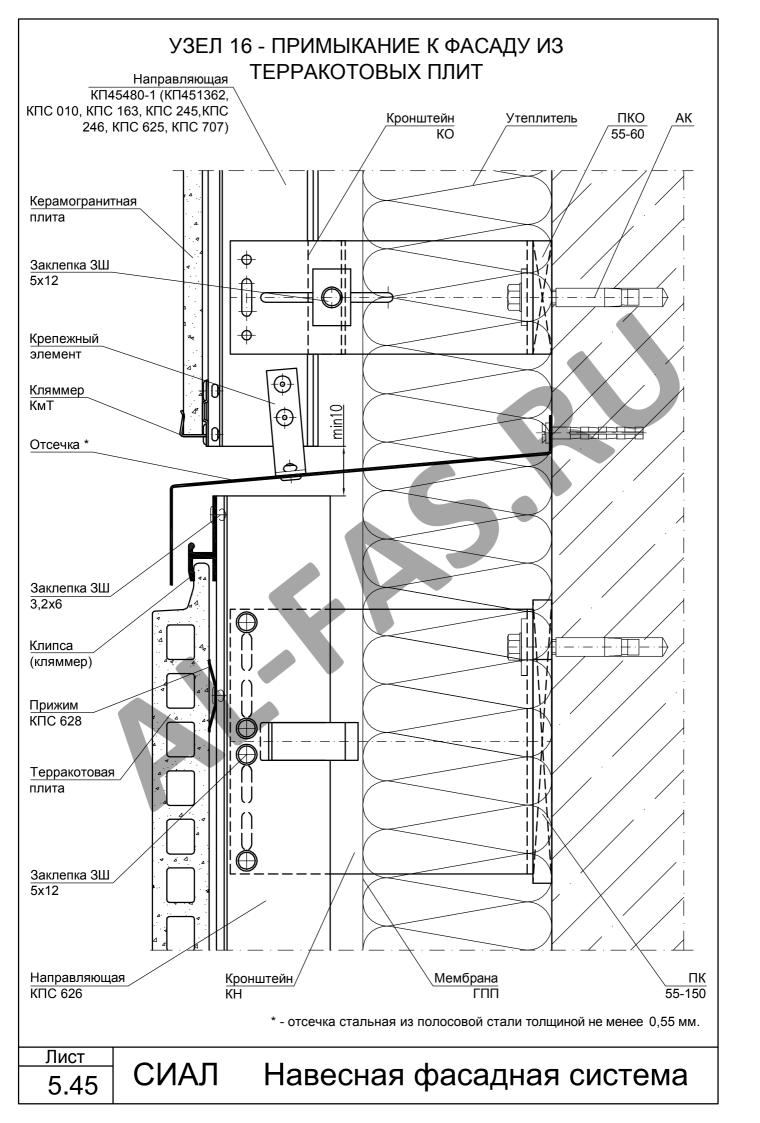

5.36

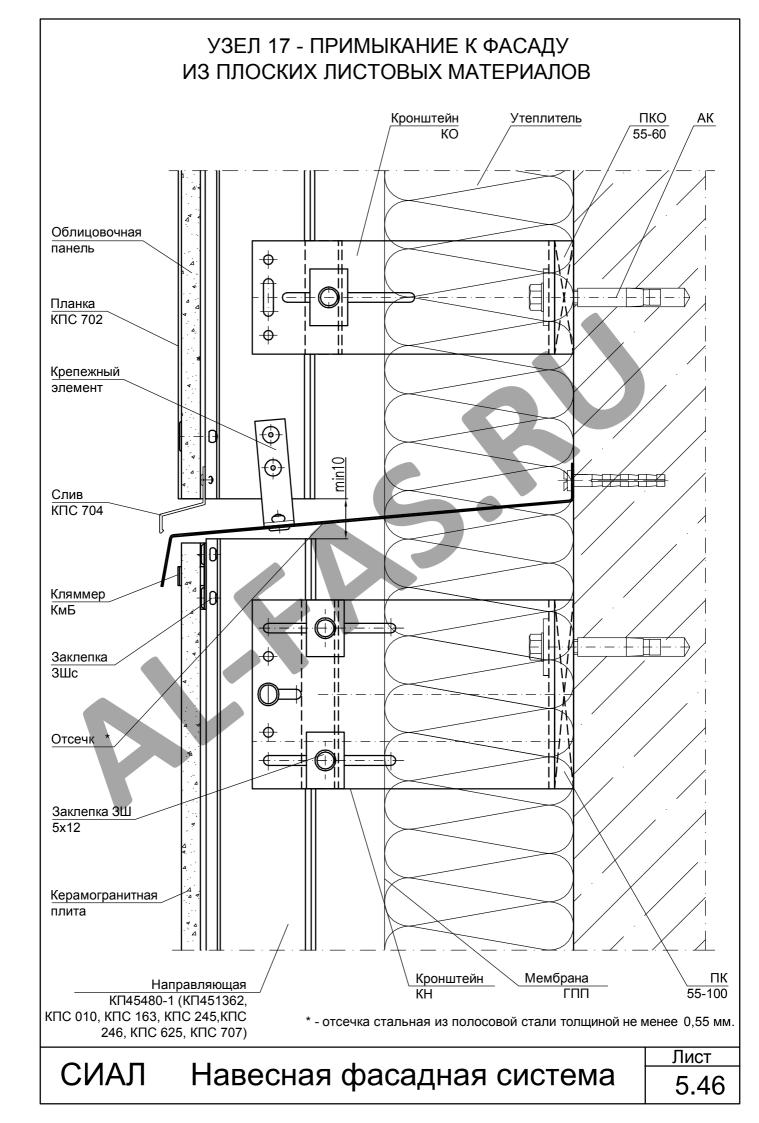

<sup>\* -</sup> элемент из стали допускается выполнять сплошным - по ширине верхнего откоса из оц. стали 0,7 мм

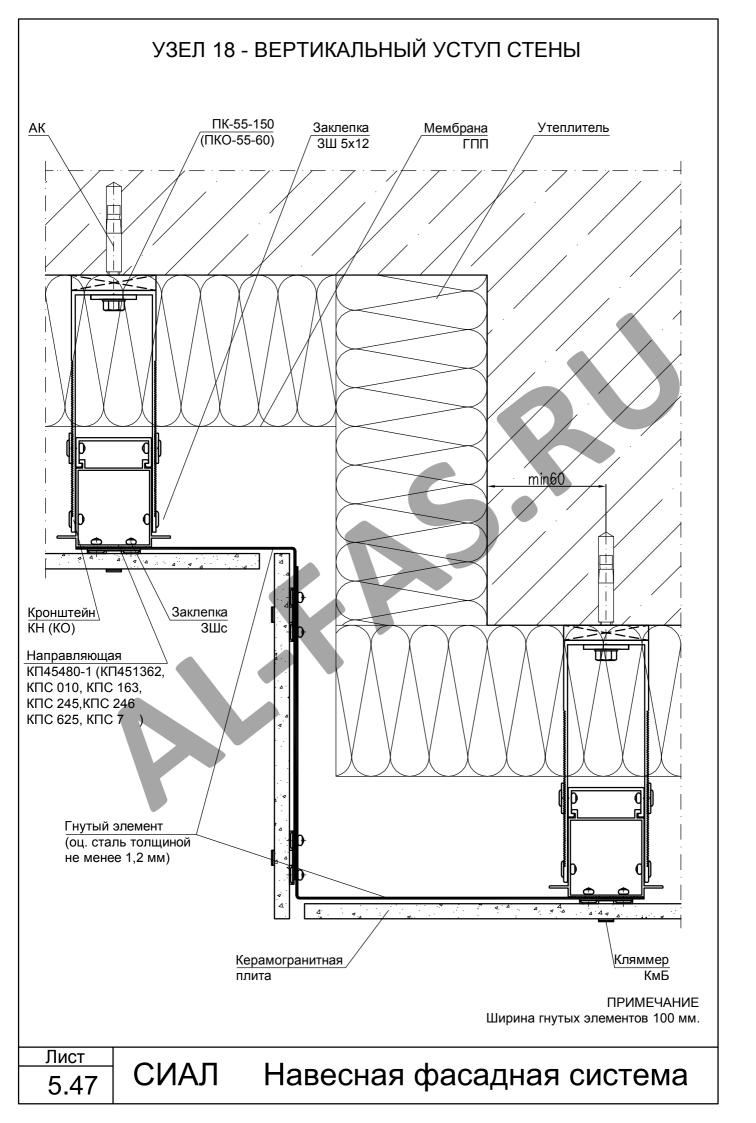


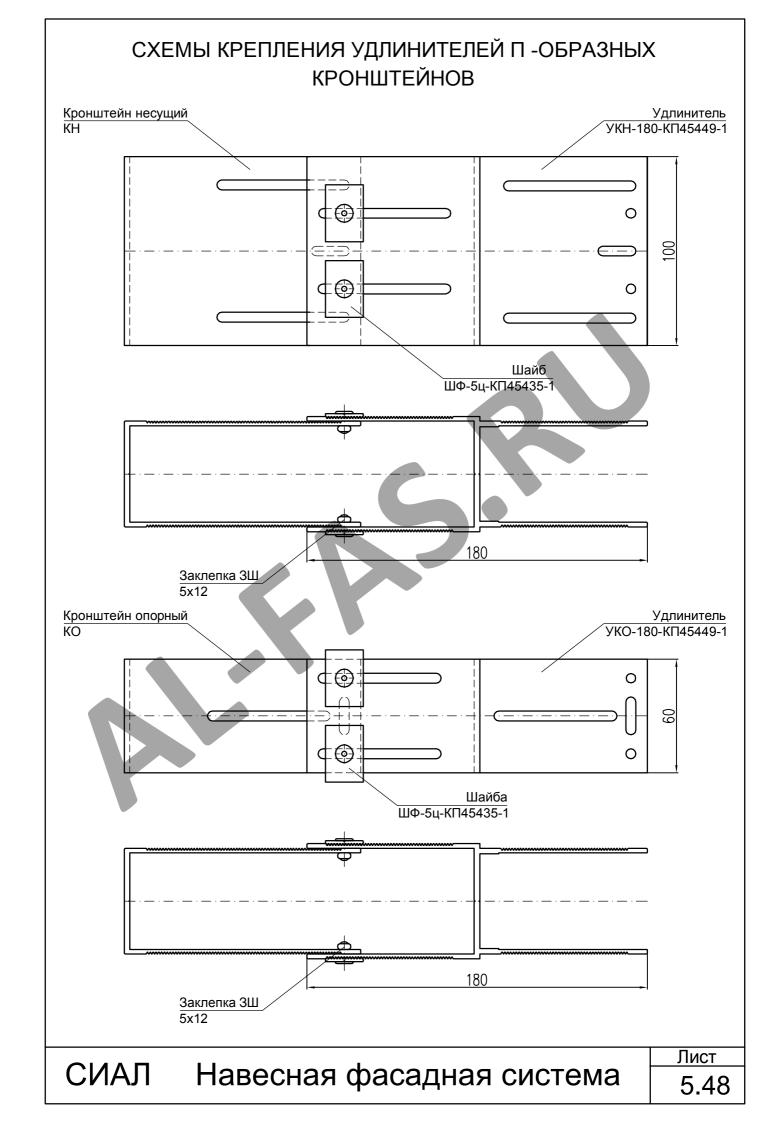




#### УЗЕЛ 12.1 - ПРИМЫКАНИЕ К КРОВЛЕ Крепежный Дюбель-Козырек Крепежный (оц. сталь) элемент элемент гвоздь КЭ2 Кляммер КмБ Заклепка ЗШс Керамогранитная плита Кронштейн Направляющая КП45480-1 Мембрана AK, ПК-55-100 Утеплитель (KΠ451362, ГПП КПС 010, КПС 163, K∏C 245, КПС 246, КПС 625, K∏C 707) Лист СИАЛ Навесная фасадная система 5.39

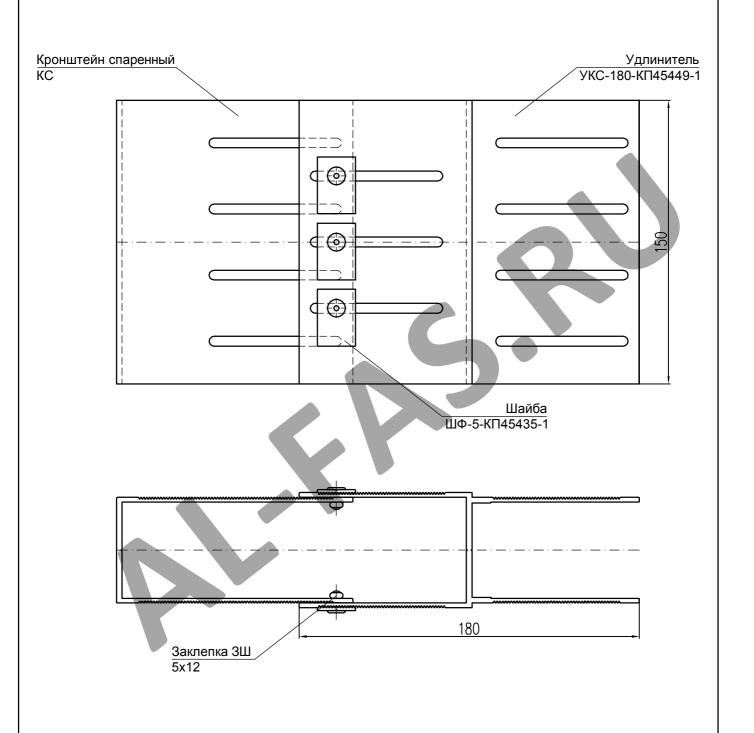


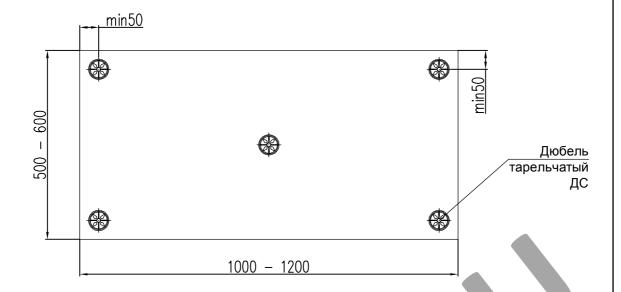

#### УЗЕЛ 15 - ПРИМЫКАНИЕ К ФАСАДУ ИЗ АЛЮМИНИЕВОГО САЙДИНГА ΑК Облицовочный Направляющая Кронштейн Утеплитель ПКО профиль K∏C 596 ΚО 55-60 (KΠC 603, KΠC 604, KΠC 605. K∏C 606) Крепежный элемент Уплотнитель КПУ-209 Стартовый профиль КПС 602 Уголок 40x20x1,5 S08/0038 Кляммер КмБ Заклепка ЗШс Φ Отсеч Заклепка ЗШ 5x12 Керамогранитная 🔏 плита Направляющая Мембрана ПК КП45480-1 (КП451362, Кронштейн 55-100 KTC 010, KTC 163, KTC 245,KTC 246, KПC 625, KПC 707) \* - отсечка стальная из полосовой стали толщиной не менее 0,55 мм. Лист СИАЛ Навесная фасадная система 5.44







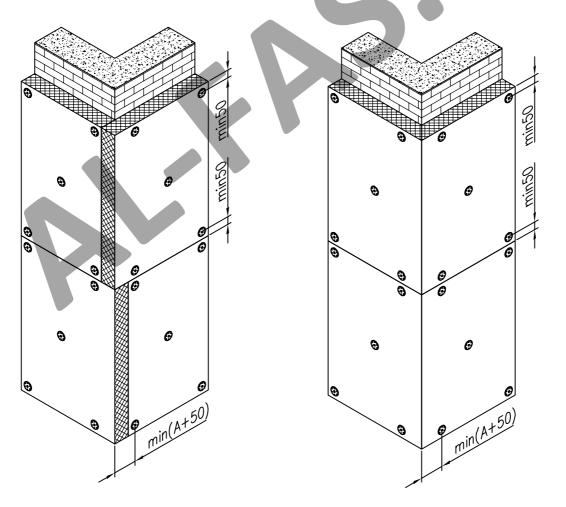




# СХЕМА КРЕПЛЕНИЯ УДЛИНИТЕЛЕЙ СПАРЕННЫХ КРОНШТЕЙНОВ



| Ли | СТ |
|----|----|
| 5. | 49 |

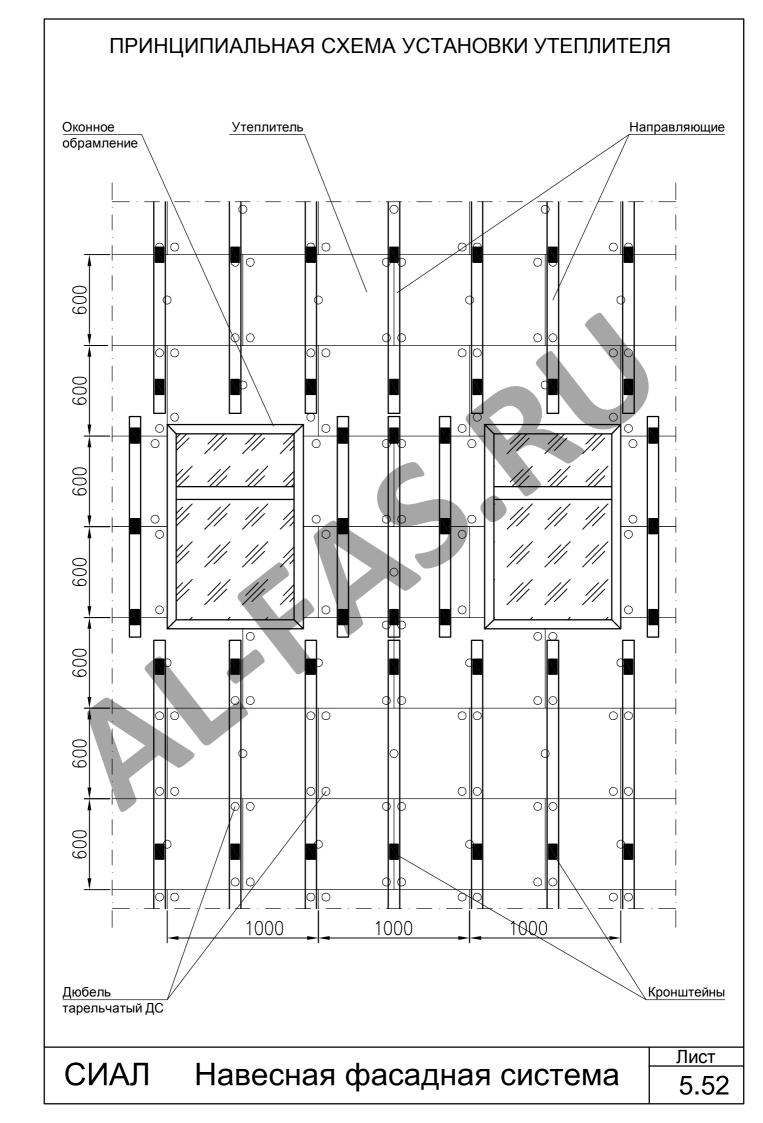
# СХЕМА КРЕПЛЕНИЯ УДЛИНИТЕЛЕЙ УСИЛЕННЫХ КРОНШТЕЙНОВ Кронштейн усиленный Удлинитель УКУ-180-КПС 580 $otin egin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ otin igotimes150 $\odot$ Шайба ШФ-5-КП45435-1 <u>За</u> пка <u>ЗШ</u> 5х14 180 Лист СИАЛ Навесная фасадная система 5.50

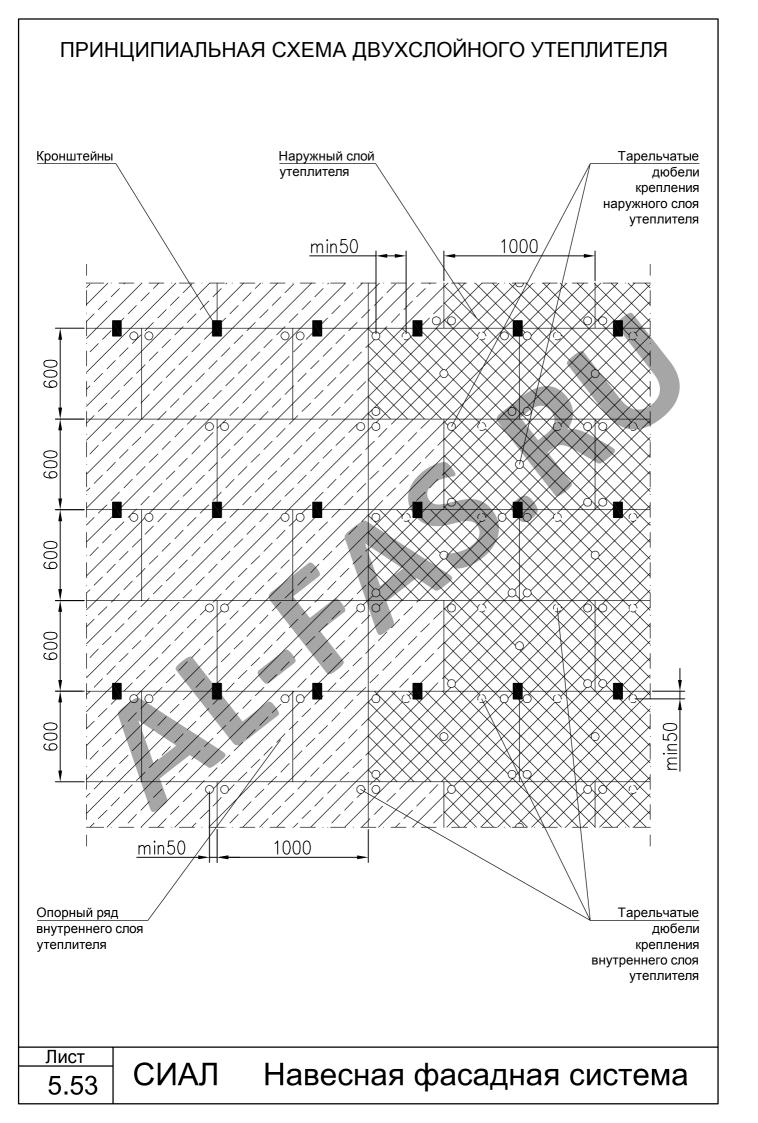

### СХЕМА КРЕПЛЕНИЯ УТЕПЛИТЕЛЯ

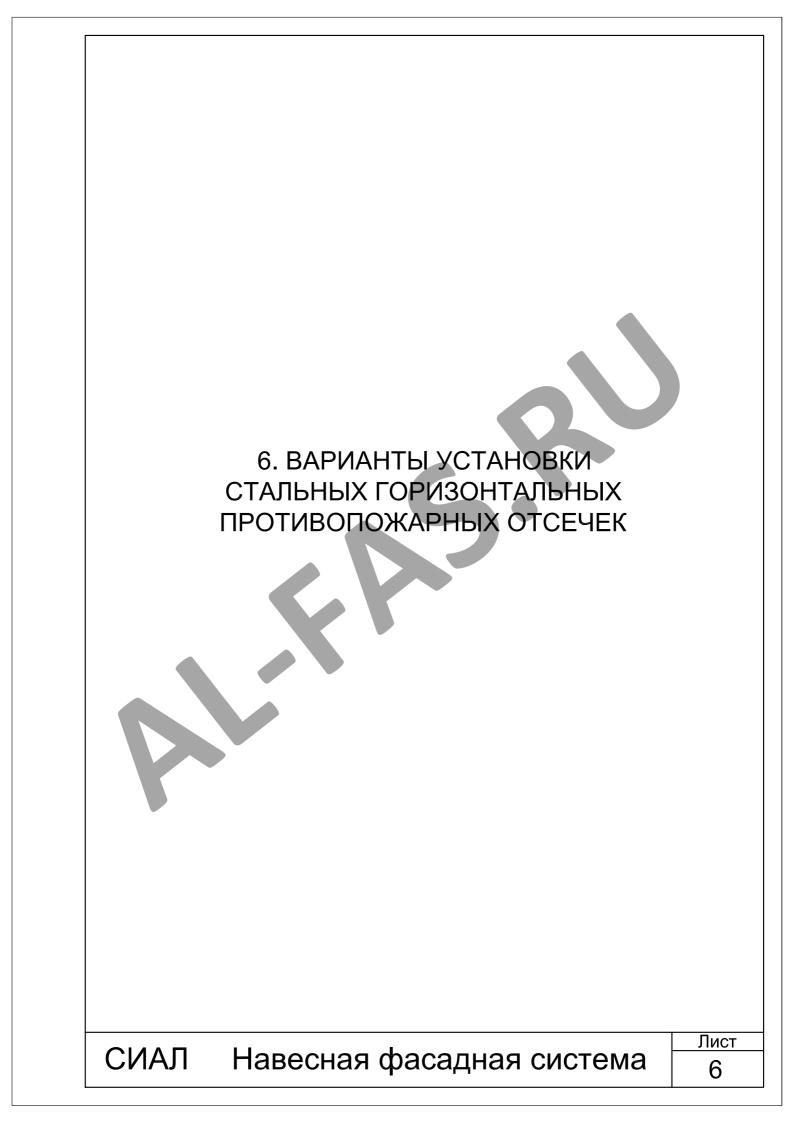


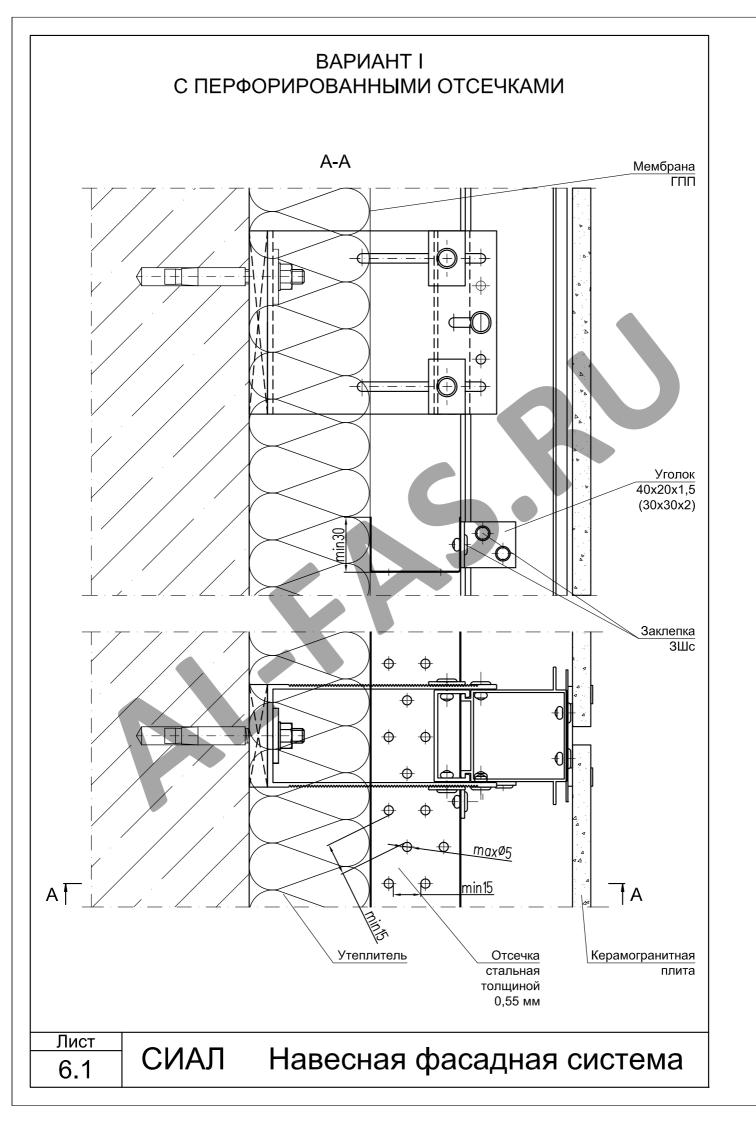
## СХЕМА КРЕПЛЕНИЯ УТЕПЛИТЕЛЯ НА УГЛУ ЗДАНИЯ

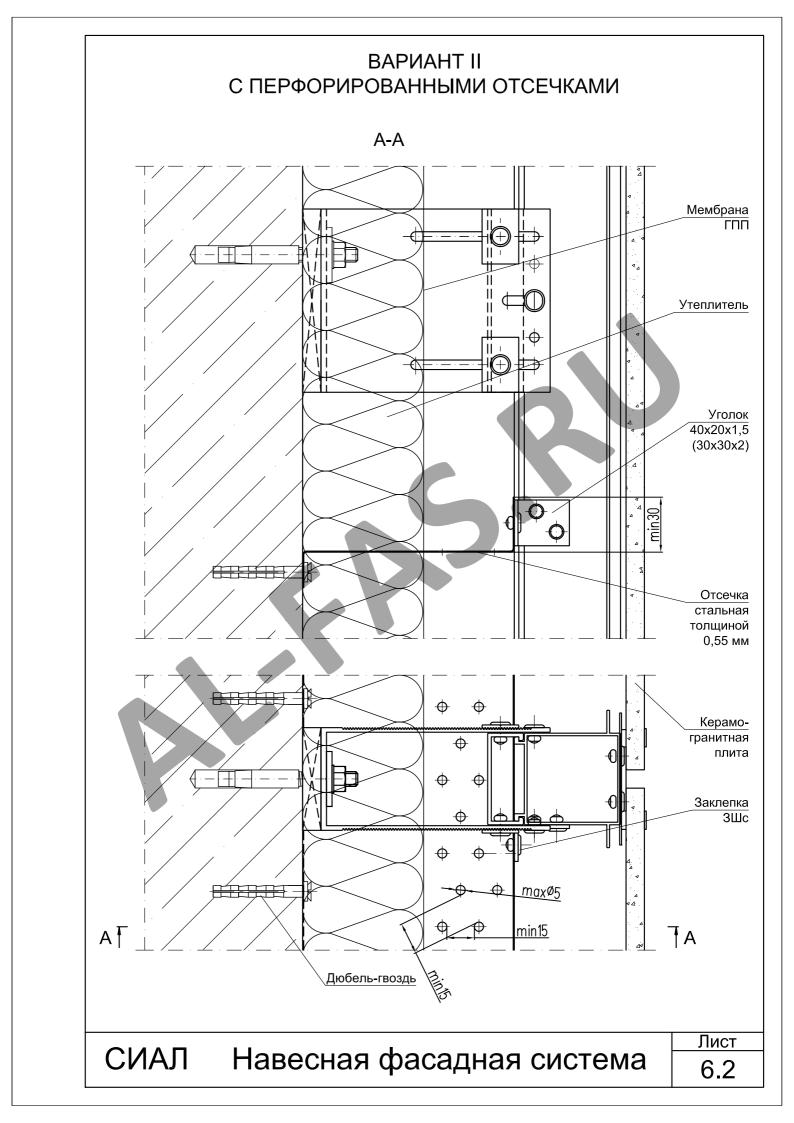
вариант I

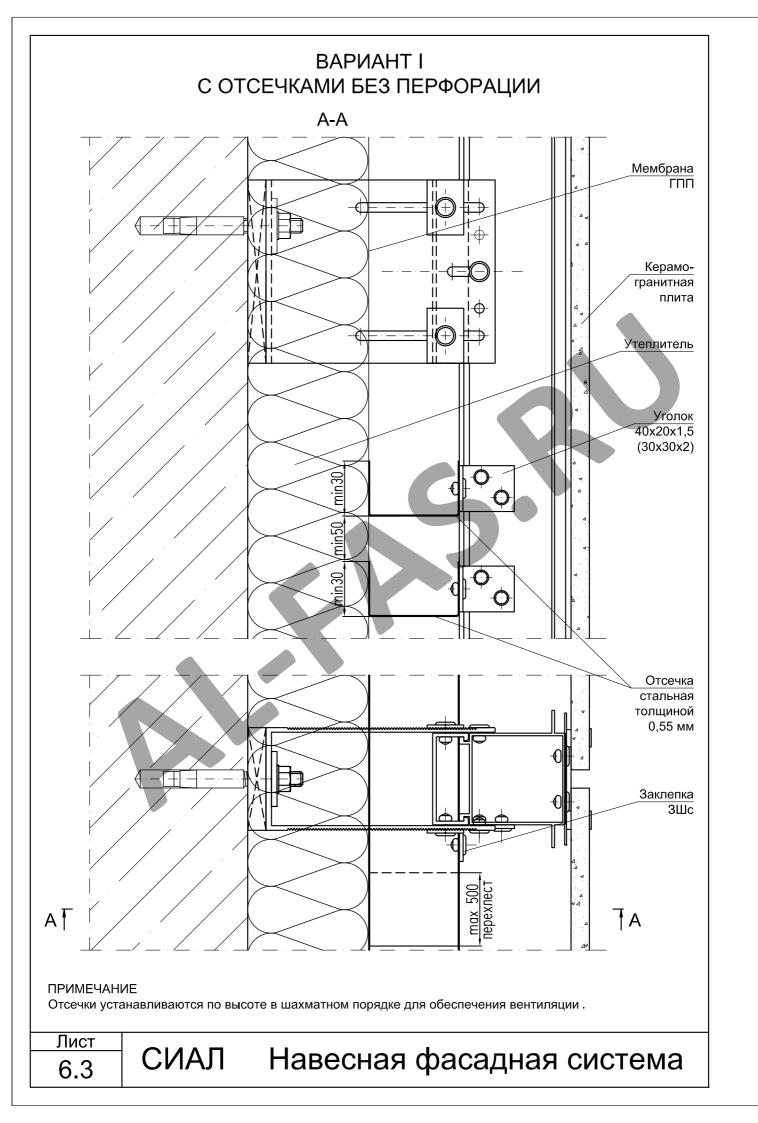

вариан II

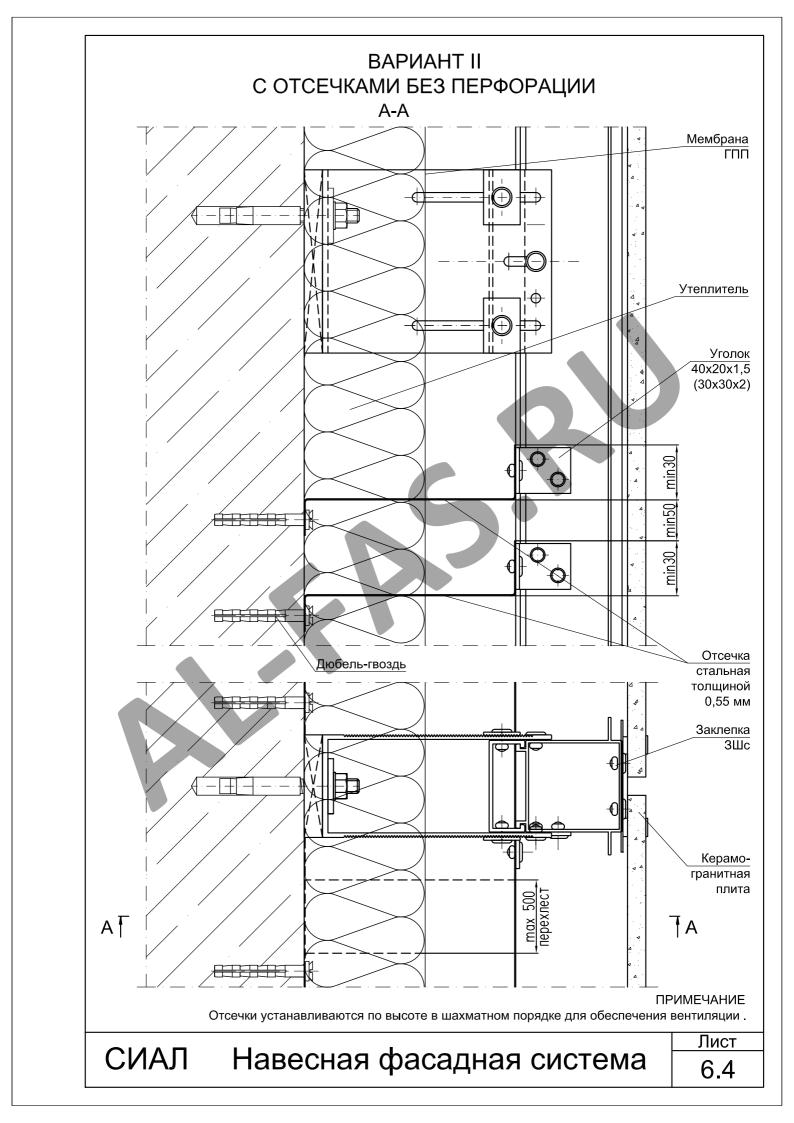


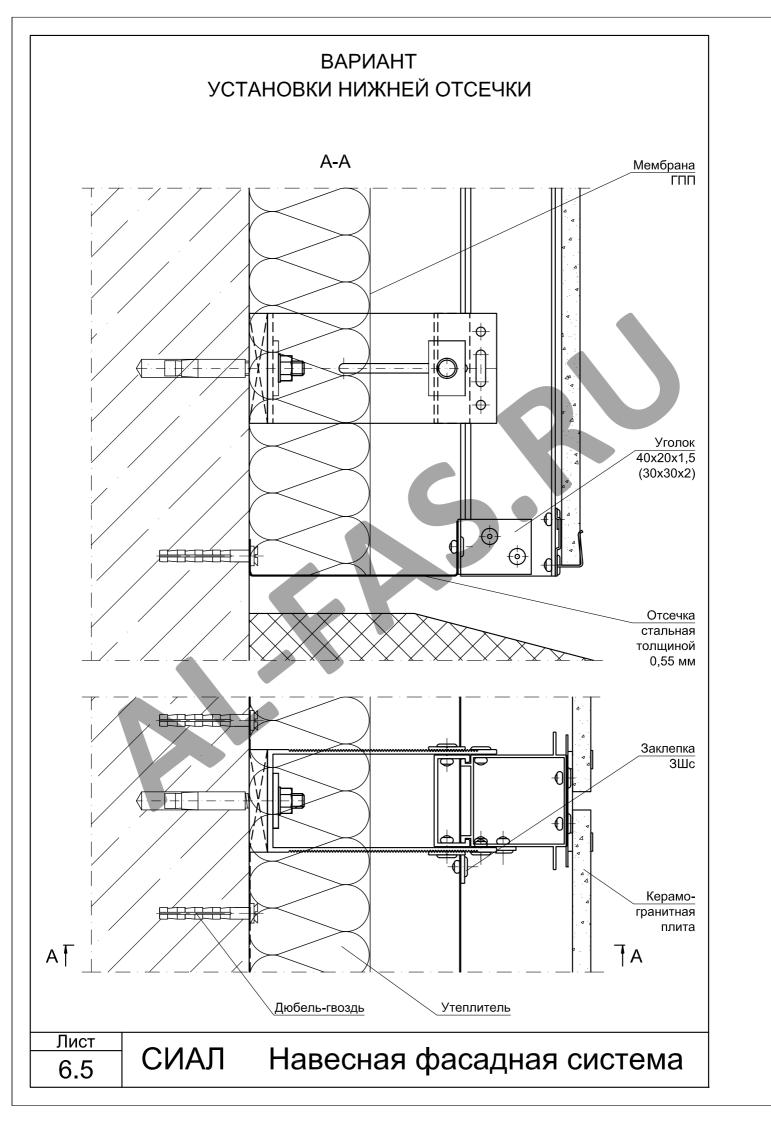


А - толщина утеплителя.


Лист 5.51


СИАЛ















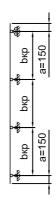

#### ВВЕДЕНИЕ

Приведенные далее расчеты предназначены для специалистов, выполняющих разработку проектов систем СИАЛ с воздушным зазором для облицовки фасадов зданий и сооружений различного назначения. Расчеты являются справочным пособием для проектирования несущего каркаса конструкции навесной фасадной системы СИАЛ П-Т-К-Км с облицовкой керамогранитными плитами видимым креплением на кляммер.

Прочностной расчет включает проверку прочности и деформаций металлических профилей, несущих нагрузку от массы облицовочных плит и от ветра, стыковых соединений между собой, их крепление к основным несущим конструкциям здания. Нагрузки от собственной массы облицовочных плит принимаются по паспортным данным предприятий - изготовителей. Нагрузки от ветра принимаются по СП 20.13330,2011

- Расчет №1: Типовой расчет конструкции системы СИАЛ П-Т-К-Км с облицовкой керамогранитной плиткой с видимым креплением на стальной кляммер в рядовой зоне;
- Расчет №2: Типовой расчет конструкции системы СИАЛ П-Т-К-Км с облицовкой керамогранитной плиткой с видимым креплением на стальной кляммер в угловой зоне.

При разработке расчетов были использованы следующие документы:


- 1. СП 20.13330.2011 Нагрузки и воздействия;
- 2. СНиП 2.03.06-85 Алюминиевые конструкции;
- 3. ГОСТ 22233-2001 Профили пресованные из алюминиевых сплавов для ограждающих конструкций. Общие технические условия.
- 4. Справочник проектировщика. Расчетно-теоретический. Стройиздат, 1972 г.
- 5. Справочное пособие по сопротивлению материалов. Изд. Высшая школа, 1971 г.



#### Расчет №1

Типовой расчет конструкции системы СИАЛ П-Т-К-Км, на П обр. кронштейне, с облицовкой керамогранитной плиткой с видимым креплением на стальной кляммер.

Рассмотрим рядовой участок здания с облицовкой керамогранитом 600х600х10 мм. Расчетная схема:



#### Исходные данные для расчета:

Ветровой район: 3 Тип местности: В

Высота здания, h: 75 м

Высота от поверхности земли, z: 75м Поперечный размер здания, d: 12м

Направляющая: КП45480-1

Кронштейн, КН(КО)-205: КП45463-2

Ширина плитки, bпл: 600мм Высота плитки, hпл: 600мм Толщина плитки, tпл:10мм Масса плитки, m: 25 кг/м<sup>2</sup>

Длина направляющей, L<sub>напр.</sub>: 3 м

Пиковое значение аэродинамического коэффициента, ср: -1,2

Коэффициент надежности по нагрузке для направляющей, у<sub>ғы</sub>: 1,05

Коэффициент надежности по нагрузке для облицовки, у<sub>б</sub>: 1,1

Коэффициент надежности по ветровой нагрузке, у<sub>f</sub>: 1,4

### Постоянная нагрузка:

Нормативная нагрузка от профиля, q<sub>п. норм.</sub>: 0,947 кг/м

Расчетная нагрузка от профиля,  $q_{\text{п.расч.}} = q_{\text{п. норм.}} * \gamma_{\text{fh}} = 0,994 \text{ кг/м}$  Нормативная нагрузка от плитки,  $q_{\text{об. норм.}} : 25 \text{ кг/м}^2$ 

Расчетная нагрузка от плитки,  $q_{of,pacy} = q_{of,hopm} * \gamma_{fo} = 27,5 \text{ кг/м}^2$ 

#### Ветровая нагрузка

Нормативную пиковую ветровую нагрузку расчитываем для рядовой зоны согласно СП 20.13330.2011

Нагрузки и воздействия по формуле:

 $w_{+(-)}^{n}=w_{0}*k_{(ze)}*[1+\varsigma_{(ze)}]*c_{p+(-)}*v_{+(-)}=1,133$  кПа Расчетную пиковую ветровую нагрузку расчитываем для рядовой зоны по формуле:

 $w_{+(-)}$ = $w_0$ \* $k_{(ze)}$ \* $[1+\zeta_{(ze)}]$ \* $c_{p+(-)}$ \* $v_{+(-)}$ \* $v_f$  = 1,587 кПа , где:  $w_0$  - нормативное значение давления ветра: 0,38 кПа

 $k_{(z_0)}$  - коэффициент учитывающий изменение давления ветра на высоте z<sub>e</sub>: 1,455

 $arsigma_{(ze)}$  - коэффициент учитывающий изменение пульсаций давления ветра на высоте  $z_e$ : 0,708

 $v_{_{+(-)}}$  - коэффициент корреляции ветровой нагрузки: 1

z<sub>e</sub> - эквивалентная высота: 75 м.

#### Расчет направляющей

Расчет направляющих выполняется на сочетание собственного веса конструкции и ветровой нагрузки.

Шаг направляющих, b<sub>напр</sub>: 606 мм

Шаг кронштейнов, b<sub>кр</sub>: 900 мм

Консоль, а: 150 мм

Плечо кронштейна, Акр: 205 мм

Удельная плотность алюминия, р: 2700 кг/м<sup>3</sup>

Нормативная ветровая нагрузка на направляющую:

$$q_w^n = w_{n+(-)}^* b_{Hanp} = 0,687 \text{ kH/M}$$

Расчетная ветровая нагрузка на направляющую:

$$q_w = w_{_{+(-)}}^{} * b_{_{\text{Hanp}}} = 0,962 \text{ кH/м}$$

Собственный вес конструкции:

$$N = P = q_{n.pacч.} * L_{hanp} + q_{ob.pacч.} * L_{hanp} * b_{hanp} = 53 кг$$

#### Расчет на прочность:

Площадь сечения профиля, A: 3,5 см<sup>2</sup>

Момент инерции профиля,  $J_x$ : 16,2 см<sup>4</sup>

Момент сопротивления профиля,  $W_x$ : 5,2 см<sup>3</sup>

Максимальный опорный момент от ветровой нагрузки:

$$M_{\text{on max}}$$
 = 0,1 \*  $q_w$  \*  $b_{\kappa p}^{-2}$  = 0,078 кHм

$$\sigma = (N/A) + (M_{on max}/\dot{W}_x) \le R_v$$

σ = 16 MΠa ≤ 120 MΠa

R<sub>v</sub> - расчетное сопротивление на растяжение: 120 МПа

#### Профиль удовлетворяет требованиям по прочности

Расчет по деформативности:

Прогиб направляющей расчитывается по формуле:

$$f = 0.00675*q_{nw}*b_{kp}^4/(E*J_x) \le (b_{kp}/200)$$

 $f = 0.03 \text{ cm} \le 0.45 \text{ cm}$ 

Е - модуль Юнга для алюминия: 710000 кг/см<sup>2</sup>

#### Прочность профиля на прогиб обеспечивается

Проверка прочности крепления направляющей к кронштейну:

Вертикальную нагрузку воспринимают две заклепки Ал/Нерж. ст. 5x12 и горизонтальную нагрузку воспринимают четыре заклепки 5x12 Ал./Нерж. ст.

Нагрузка от веса облицовки и профиля на одну заклепку:

$$P_{3aK1} = P/2 = 262H$$

Нагрузка от ветра на одну заклепку:

$$P = N_{WH} / 4 + M_D / (2 e) = 241H$$

, где: 
$$N_{WH} = q_W^*(b_{KD} / 2 + a) * \gamma_m = 693H$$

у<sub>т</sub> - коэфициент надежности для узлов крепления: 1,2

M<sub>D</sub> - момент от собственного веса конструкции:

$$M_{D} = P*E1 = 9,4 H*M$$

Е1 - расстояние от точки приложения нагрузки до заклепок: 0,018 м

е - расстояние между заклепками: 0,07м

Лист

7.3

СИАЛ

Расчет соединения на срез заклепки:

$$P_{3aK1}^* \gamma_n \le N_{sz}^* \gamma_c$$

262 H ≤ 1120 H

$$P_{3a\kappa 2}^* \gamma_n \le N_{sz}^* \gamma_c$$

241 H ≤ 1120 H

, где: N<sub>sz</sub> - допускаемое усилие на срез заклепки:1120 H

у<sub>п</sub> - коэфициент надежности по ответственности (по назначению):1

ус - коэфициент условий работы алюминиевых конструкций:1

Расчет соединения на смятие соединяемых элементов конструкций:

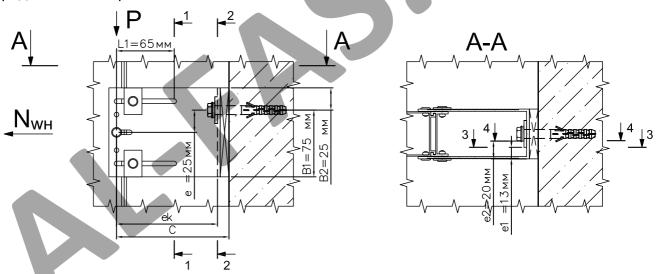
$$(P_{3a\kappa1}/A)^*\gamma_n \le R_{rp}^*\gamma_c$$

37 МПа ≤ 195 МПа

$$(P_{3a\kappa2} / A)^* \gamma_n \le R_{rp}^* \gamma_c$$

34 МПа ≤ 195 МПа

, где:  $R_{rp}$  - расчетное сопротивление смятию элементов конструкций:195 МПа  $A = t_{min}^* d_{3a\kappa} = 7 mm^2$ 


 $t_{\text{min}}$  - наименьшая толщина сминаемого элемента: 1,4 мм

d<sub>зак</sub> - диаметр заклепки: 5 мм

Прочность соединения направляющей с кронштейном обеспечивается

#### Расчет несущего кронштейна

В кронштейне проверяются сечения на консоли ослабленное отверстиями для крепления салазки и около опоры, сечение на опорной части по краю фиксирующей шайбы - краю шайбы анкерного элемента. Положение анкерного элемента принято средним по оси кронштейна.



Геометрические характеристики поперечного сечения несущего кронштейна:

Высота кронштейна, h: 100 мм

Высота кронштейна за вычетом отверстий, h1: 90 мм

Толщина стенки кронштейна в пл-ти приложения нагрузки, t: 2,5 мм

Толщина стенки кронштейна в пл-ти крепления к основанию, t1: 3 мм

Усилие на кронштейн от ветра составляет:

$$N_{WH} = q_W * (b_{KD}/2 + a) = 577 H$$

#### Проверка кронштейна по сечению (1-1):

Момент сопротивления сечения кронштейна, W<sub>х 1-1</sub>: 7060 мм<sup>3</sup>

Момент инерции сечения кронштейна,  $J_{x \, 1 \, 1}$  352800 мм<sup>4</sup>

Статический момент инерции сечения кронштейна,  $S_{x 1-1} = ((h1/2)^*2^*t) * h1/4$ : 5063 мм³

Усилие от вертикальной нагрузки, Р: 53 кг

Усилие от вертикальной и горизонтальной нагрузки:

# СИАЛ Навесная фасадная система

Лист

7.4

 $N_{v1} = w_{+(-)} b_{Hanp} (b_{Kp}/2+a) = 577 H$ 

Проверка прочности поперечного сечения на растяжение с изгибом и сдвигом (срез) по формуле на растяжение с изгибом:

 $\sigma_{1-1}$ =(M/W<sub>x 1-1</sub>)+(N<sub>y,1</sub>/A<sub>1-1</sub>) = 6 МПа ≤ 120 МПа

, где A<sub>1-1</sub> - площадь сечения кронштейна по сечению 1-1.

М - момент от вертикальной нагрузки: М = P\*L1 = 34,114 Нм

L1 - плечо вертикальной нагрузки: 65 мм

#### Проверка кронштейна по сечению (2-2):

Момент сопротивления сечения кронштейна, W<sub>х 2-2</sub>: 8470 мм<sup>3</sup>

Момент инерции сечения кронштейна,  $J_{x 2-2}$ : 423400 мм<sup>4</sup>

Статический момент инерции сечения кронштейна,  $S_{x 2-2} = ((h/2)^*2^*t1)^* h/4 = 7500 \text{ мм}^3$ 

Усилие от вертикальной нагрузки, Р: 53 кг

Усилие от вертикальной и горизонтальной нагрузки:

 $N_{v2} = W_{+(-)}^* b_{Hanp}^* (b_{Kp}/2+a) = 577 \text{ H}$ 

Проверка прочности поперечного сечения на растяжение с изгибом и сдвигом (срез) по формуле на растяжение с изгибом:

 $\sigma_{2-2} = (P^*ek/W_{\times 2-2}) + (N_{\sqrt{2}}/A_{2-2}) = 13 МПа \le 120 МПа$ 

, где: М- момент от вертикальной нагрузки: М = P\*ek = 102,867 Нм

ek - плечо: 196 мм

A<sub>2-2</sub> - площадь сечения кронштейна по сечению 2-2.

#### Проверка кронштейна по сечению (3-3):

Напряжение от изгиба:

 $\sigma_{3-3} = M_{3-3}/W_{3-3v} = 37 \text{ M}\Pi \text{a} \le 120 \text{ M}\Pi \text{a}$ 

, где:  $W_{3-3y}$  - момент кронштейна по сечению 3-3:  $W_{3-3y} = b*h^2/6 = 0,101$  см<sup>3</sup>

b - высота пяты кронштейна за вычетом отверстий под анкер: 6,7 см

h - толщина пяты кронштейна: 0,3 см

М<sub>3-3</sub> - максимальный момент от ветра в пяте кронштейна по грани шайбы:

 $M_{3-3} = (w_{-(+)}^* S_{WH}^* e1)/2 = 3,755 \text{ H}^* M$ 

S<sub>WH</sub> - площадь сбора ветровой нагрузки на несущий кронштейн: 0,364 м²

е1 - размер до грани шайбы: 1,3 см

#### Проверка кронштейна по сечению (4-4):

Напряжение от изгиба:

 $\sigma_{4-4} = M_{4-4}/W_{4-4y} = 40 \text{ МПа} \le 120 \text{ МПа}$ 

, где W<sub>4-4</sub> - момент сечения кронштейна по сечению 4-4:

 $W_{4-4v} = W_{3-3v} + W_{III} = 0,146 \text{ cm}^3$ 

 $W_{\text{ш}}$  - момент сечения шайбы по сечению 4-4: 0,045 см<sup>3</sup>

М<sub>4-4</sub> - максимальный момент от ветра в пяте кронштейна по грани шайбы анкера:

 $M_{4-4} = (w_{-(+)}^* S_{WH}^* e2)/2 = 5,777 \text{ H*M}$ 

S<sub>WH</sub> - пло̀щадь сбора ветровой нагрузки на несущий кронштейн: 0,364 м²

е2 - размер до шайбы анкера: 2 см

# Прочность несущего кронштейна на растяжение с изгибом и сдвиг (срез) обеспечивается

#### Определение усилий в анкерном элементе:

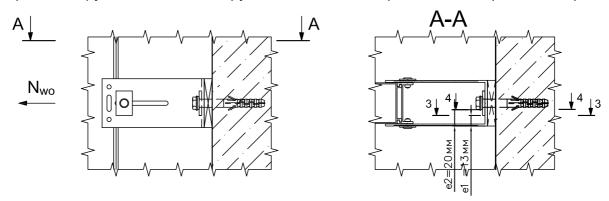
Момент в вертикальной плоскости:

M1 = P\*C = 109.69 H\*M

, где: С - плечо от вертикальной нагрузки на анкер: 209 мм

Определяем усилие вырыва анкера:

 $N_{aH} = N_{WH} + M1/B1 = 2040 H$ 


, где: В1 - плечо от момента вызваного вертикальной нагрузкой на анкер: 75 мм

Лист

7.5

#### Расчет опорного кронштейна

Опорные кронштейны воспринимают только продольные усилия от горизонтальной ветровой нагрузки; наиболее нагруженным является кронштейн на средней опоре.



Геометрические характеристики поперечного сечения несущего кронштейна, по сечению 2-2:

Высота кронштейна, h: 60 мм

Толщина стенки кронштейна, t: 3 мм

Усилие от горизонтальной нагрузки:  $N_{wo} = K_{HC}^* q_w^* b_{KD} = 952 \text{ H}$ 

, где: К<sub>нс</sub> - коэффициент неразрезности среднее положение: 1,1

Проверка кронштейна по сечению 2-2:

$$\sigma_{2-2}$$
 = N<sub>wo</sub> / A<sub>2-2</sub> = 3 MΠa ≤ 120 MΠa

, где:  $A_{2-2}$  - площадь сечения кронштейна по сечению 2-2.

Проверка кронштейна по сечению 3-3:

Напряжение от изгиба в пяте кронштейна:

$$\sigma_{3-3} = M_{rop}^{\Pi 3-3} / W_{3-3v} = 84 \text{ M}\Pi a \le 120 \text{ M}\Pi a$$

 $\sigma_{3-3}=M_{rop}^{\Pi 3-3}/W_{3-3y}=84$  МПа ≤ 120 МПа , где:  $W_{3-3y}$  - момент ослабленного сечения кронштейна:  $W_{3-3y}=b^*h2/6=0,07$  см³

b - высота пяты кронштейна за вычетом отверстия под анкер: 4,9 см

h - толщина пяты кронштейна: 0,3 см

 $\mathsf{M}^{\Pi 3\text{--}3}_{\mathsf{rop}}$  - максимальный момент от ветра в пяте кронштейна по грани шайбы:

 $M_{\text{rop}}^{\Pi\dot{3}\text{-}3} = (w_{+(-)}^*S_{WO}^*K_{HC}^*e1)/2 = 0,62 \text{ k}\text{г}^*M$ 

 $S_{WO}$  - площадь сбора ветровой нагрузки на опорный кронштейн: 0,55 м $^2$ 

е1 - размер до грани шайбы: 1,3 см

Проверка кронштейна по сечению 4-4:

Напряжение от изгиба в пяте кронштейна:

$$\sigma_{4-4} = M_{rop}^{\Pi 4-4}/W_{4-4v} = 80 M\Pi a ≤ 120 M\Pi a$$

 $\sigma_{4\text{-}4} = \mathsf{M}^{\Pi^{4\text{-}4}}_{\text{гор}} / \mathsf{W}_{4\text{-}4\text{y}} = 80 \text{ M}\Pi a ≤ 120 \text{ M}\Pi a$ , где:  $\mathsf{W}_{4\text{-}4\text{y}}$  - максимальный момент от ветра в пяте кронштейна по грани шайбы

 $W_{4-4y} = W_{3-3y} + W_{III} = 0.12 \text{ cm}^3$ 

 $W_{\rm m}^{4.3}$  момент сечения шайбы по сечению 2-2: 0,045 см<sup>3</sup>

 $M_{rop}^{\Pi^{4-4}}$  - максимальный момент от ветра в пяте кронштейна по грани шайбы анкера:

 $M_{rop}^{\Pi\dot{4}-4} = (w_{+(-)}^{} S_{WO}^{} K_{HK}^{} e2)/2 = 0,952 \text{ } \kappa \Gamma^* M$ 

S<sub>WO</sub> - площадь сбора ветровой нагрузки на опорный кронштейн: 0,55 м²

е2 - размер до грани шайбы анкера: 2 см

#### Прочность опорного кронштейна обеспечивается

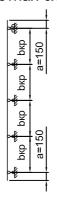
Определение усилия вырыва в анкерном элементе:  $N_{ah} = N_{wo} = 952 \text{ H}$ Заключение: Согласно выполненого расчета крепление направляющей КП45480-1, в рядовой зоне, выполняется по следующей схеме: 1 несущий кронштейн и 3 опорных.

СИАЛ Навесная фасадная система Лист

Согласно найденным расчетным усилиям на вырыв 2863 Н в несущем кронштейне и 1300 Н в опорном подбирается анкер. Окончательное решение о применении анкера принимается по результатам натурных испытаний по методике приведенной в ТО на соответствующий анкер согласно СТО ФЦС-44416204-010-2010.



Лист


7.7

СИАЛ

#### Расчет №2

Типовой расчет конструкции системы СИАЛ П-Т-К-Км, на П обр. кронштейне, с облицовкой керамогранитной плиткой с видимым креплением на стальной кляммер.

Рассмотрим угловой участок здания с облицовкой керамогранитом 600х600х10 мм. Расчетная схема:



#### Исходные данные для расчета:

Ветровой район: 3 Тип местности: В

Высота здания, h: 75 м

Высота от поверхности земли, z: 75м Поперечный размер здания, d: 12м

Направляющая: КП45480-1

Кронштейн, КН(КО)-205: КП45463-2

Ширина плитки, bпл: 600мм Высота плитки, hпл: 600мм Толщина плитки, tпл:10мм Масса плитки, m: 25 кг/м<sup>2</sup>

Длина направляющей, L<sub>напр.</sub>: 3 м

Пиковое значение аэродинамического коэффициента, ср: -2,2

Коэффициент надежности по нагрузке для направляющей, у<sub>ғы</sub>: 1,05

Коэффициент надежности по нагрузке для облицовки, у<sub>б</sub>: 1,1

Коэффициент надежности по ветровой нагрузке, у<sub>f</sub>: 1,4

### Постоянная нагрузка:

Нормативная нагрузка от профиля, q<sub>п. норм.</sub>: 0,947 кг/м

Расчетная нагрузка от профиля,  $q_{\text{п.расч.}} = q_{\text{п. норм.}} * \gamma_{\text{fh}} = 0,994 \text{ кг/м}$  Нормативная нагрузка от плитки,  $q_{\text{об. норм.}} : 25 \text{ кг/м}^2$ 

Расчетная нагрузка от плитки,  $q_{ob,pacu} = q_{ob,hopm} * \gamma_{fo} = 27,5 \text{ кг/м}^2$ 

### Ветровая нагрузка

Нормативную пиковую ветровую нагрузку расчитываем для рядовой зоны согласно СП 20.13330.2011

Нагрузки и воздействия по формуле:

 $w_{+(-)}^{n}=w_{0}*k_{(ze)}*[1+\varsigma_{(ze)}]*c_{p+(-)}*v_{+(-)}=2,078$  кПа Расчетную пиковую ветровую нагрузку расчитываем для рядовой зоны по формуле:

 $w_{+(-)}$ = $w_0$ \* $k_{(ze)}$ \* $[1+\zeta_{(ze)}]$ \* $c_{p+(-)}$ \* $v_{+(-)}$ \* $v_f$  = 2,909 кПа , где:  $w_0$  - нормативное значение давления ветра: 0,38 кПа

 $k_{(z_0)}$  - коэффициент учитывающий изменение давления ветра на высоте  $z_e$ : 1,455

 $arsigma_{(ze)}$  - коэффициент учитывающий изменение пульсаций давления ветра на высоте  $z_e$ : 0,708

 $v_{_{+(-)}}$  - коэффициент корреляции ветровой нагрузки: 1

z<sub>e</sub> - эквивалентная высота: 75 м.

#### Расчет направляющей

Расчет направляющих выполняется на сочетание собственного веса конструкции и ветровой нагрузки.

Шаг направляющих, b<sub>напр</sub>: 606 мм

Шаг кронштейнов, b<sub>кр</sub>: 675 мм

Консоль, а: 150 мм

Плечо кронштейна, Акр: 205 мм

Удельная плотность алюминия, р: 2700 кг/м<sup>3</sup>

Нормативная ветровая нагрузка на направляющую:

$$q_w^n = w_{n+(-)}^* b_{Hanp} = 1,259 \text{ kH/M}$$

Расчетная ветровая нагрузка на направляющую:

$$q_w = w_{+(-)}^* b_{Hanp} = 1,763 \text{ kH/m}$$

Собственный вес конструкции:

$$N = P = q_{n.pacч.} * L_{hanp} + q_{ob.pacч.} * L_{hanp} * b_{hanp} = 53 кг$$

#### Расчет на прочность:

Площадь сечения профиля, A: 3,5 см<sup>2</sup>

Момент инерции профиля,  $J_x$ : 16,2 см<sup>4</sup>

Момент сопротивления профиля, W<sub>x</sub>: 5,2 см<sup>3</sup>

Максимальный опорный момент от ветровой нагрузки:

$$M_{\text{on max}} = 0.107 * q_w * b_{\kappa p}^2 = 0.086 к H м$$

$$\sigma = (N/A) + (M_{on max}/W_x) \le R_v$$

σ = 18 MΠa ≤ 120 MΠa

R<sub>v</sub> - расчетное сопротивление на растяжение: 120 МПа

#### Профиль удовлетворяет требованиям по прочности

Расчет по деформативности:

Прогиб направляющей расчитывается по формуле:

$$f = 0.0063*q_{nw}*b_{KD}^4/(E*J_X) \le (b_{KD}/200)$$

 $f = 0.01 \text{ cm} \le 0.34 \text{ cm}$ 

Е - модуль Юнга для алюминия: 710000 кг/см<sup>2</sup>

#### Прочность профиля на прогиб обеспечивается

Проверка прочности крепления направляющей к кронштейну:

Вертикальную нагрузку воспринимают две заклепки Ал/Нерж. ст. 5x12 и горизонтальную нагрузку воспринимают четыре заклепки 5x12 Ал./Нерж. ст.

Нагрузка от веса облицовки и профиля на одну заклепку:

$$P_{3aK1} = P/2 = 262H$$

Нагрузка от ветра на одну заклепку:

$$P = N_{WH} / 4 + M_D / (2 e) = 325H$$

, где: 
$$N_{WH} = q_w^**(b_{KP} / 2 + a) * \gamma_m = 1031H$$

у<sub>т</sub> - коэфициент надежности для узлов крепления: 1,2

M<sub>D</sub> - момент от собственного веса конструкции:

$$M_D = P*E1 = 9,4 H*M$$

Е1 - расстояние от точки приложения нагрузки до заклепок: 0,018 м

е - расстояние между заклепками: 0,07м

Лист

7.9

# СИАЛ

Расчет соединения на срез заклепки:

$$P_{3aK1}^* \gamma_n \le N_{sz}^* \gamma_c$$

$$P_{3a\kappa 2}^* \gamma_n \le N_{sz}^* \gamma_c$$

, где: N<sub>sz</sub> - допускаемое усилие на срез заклепки:1120 H

у<sub>п</sub> - коэфициент надежности по ответственности (по назначению):1

ус - коэфициент условий работы алюминиевых конструкций:1

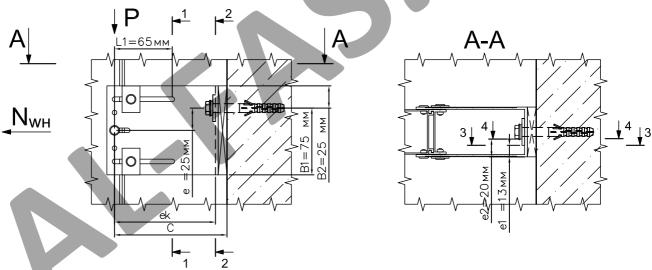
Расчет соединения на смятие соединяемых элементов конструкций:

$$(P_{3a\kappa1}/A)^*\gamma_n \le R_{rp}^*\gamma_c$$

37 МПа ≤ 195 МПа

$$(P_{3a\kappa2} / A)^* \gamma_n \le R_{rp}^* \gamma_c$$

, где:  $R_{rp}$  - расчетное сопротивление смятию элементов конструкций:195 МПа  $A = t_{min}^* t_{3ak}^2 = 7 mm^2$ 


 $t_{\text{min}}$  - наименьшая толщина сминаемого элемента: 1,4 мм

d<sub>зак</sub> - диаметр заклепки: 5 мм

Прочность соединения направляющей с кронштейном обеспечивается

#### Расчет несущего кронштейна

В кронштейне проверяются сечения на консоли ослабленное отверстиями для крепления салазки и около опоры, сечение на опорной части по краю фиксирующей шайбы - краю шайбы анкерного элемента. Положение анкерного элемента принято средним по оси кронштейна.



Геометрические характеристики поперечного сечения несущего кронштейна:

Высота кронштейна, h: 100 мм

Высота кронштейна за вычетом отверстий, h1: 90 мм

Толщина стенки кронштейна в пл-ти приложения нагрузки, t: 2,5 мм

Толщина стенки кронштейна в пл-ти крепления к основанию, t1: 3 мм

Усилие на кронштейн от ветра составляет:

$$N_{WH} = q_W * (b_{KD}/2 + a) = 859 H$$

#### Проверка кронштейна по сечению (1-1):

Момент сопротивления сечения кронштейна, W<sub>х 1-1</sub>: 7060 мм<sup>3</sup>

Момент инерции сечения кронштейна,  $J_{x 1-1}$ : 352800 мм<sup>4</sup>

Статический момент инерции сечения кронштейна,  $S_{x 1-1} = ((h1/2)^*2^*t) * h1/4$ : 5063 мм³

Усилие от вертикальной нагрузки, Р: 53 кг

Усилие от вертикальной и горизонтальной нагрузки:

 $N_{v1} = w_{+(-)}^* b_{\text{Hanp}}^* (b_{\kappa p}/2 + a) = 859H$ 

Проверка прочности поперечного сечения на растяжение с изгибом и сдвигом (срез) по формуле на растяжение с изгибом:

 $σ_{1-1}$ =(M/W<sub>x 1-1</sub>)+(N<sub>y1</sub>/A<sub>1-1</sub>) = 7 MΠa ≤ 120 MΠa

, где A<sub>1-1</sub> - площадь сечения кронштейна по сечению 1-1.

М - момент от вертикальной нагрузки: М = P\*L1 = 34,114 Нм

L1 - плечо вертикальной нагрузки: 65 мм

#### Проверка кронштейна по сечению (2-2):

Момент сопротивления сечения кронштейна, W<sub>х 2-2</sub>: 8470 мм<sup>3</sup>

Момент инерции сечения кронштейна, J<sub>x 2-2</sub>: 423400 мм<sup>4</sup>

Статический момент инерции сечения кронштейна,  $S_{x\,2-2}$  = ((h/2)\*2\*t1) \* h/4 = 7500 мм³

Усилие от вертикальной нагрузки, Р: 53 кг

Усилие от вертикальной и горизонтальной нагрузки:

 $N_{v2} = W_{+(-)}^* b_{Hanp}^* (b_{Kp}/2+a) = 859 \text{ H}$ 

Проверка прочности поперечного сечения на растяжение с изгибом и сдвигом (срез) по формуле на растяжение с изгибом:

 $σ_{2-2}$  = (P\*ek/W<sub>x 2-2</sub>) + (N<sub>y2</sub>/A<sub>2-2</sub>) = 14 ΜΠα ≤ 120 ΜΠα

, где: М- момент от вертикальной нагрузки: М = P\*ek = 102,867 Hм

ek - плечо: 196 мм

A<sub>2-2</sub> - площадь сечения кронштейна по сечению 2-2.

#### Проверка кронштейна по сечению (3-3):

Напряжение от изгиба:

 $\sigma_{3-3} = M_{3-3}/W_{3-3v} = 56 \text{ M}\Pi \text{a} \leq 120 \text{ M}\Pi \text{a}$ 

, где:  $W_{3-3y}$  - момент кронштейна по сечению 3-3:  $W_{3-3y} = b*h^2/6 = 0,101$  см<sup>3</sup>

b - высота пяты кронштейна за вычетом отверстий под анкер: 6,7 см

h - толщина пяты кронштейна: 0,3 см

М<sub>3-3</sub> - максимальный момент от ветра в пяте кронштейна по грани шайбы:

 $M_{3-3} = (w_{-(+)}^* S_{WH}^* e1)/2 = 5,578 \text{ H}^* M$ 

S<sub>WH</sub> - площадь сбора ветровой нагрузки на несущий кронштейн: 0,295 м²

е1 - размер до грани шайбы: 1,3 см

#### Проверка кронштейна по сечению (4-4):

Напряжение от изгиба:

 $\sigma_{4-4} = M_{4-4}/W_{4-4V} = 59 \text{ МПа} \le 120 \text{ МПа}$ 

, где W<sub>4-4</sub> - момент сечения кронштейна по сечению 4-4:

 $W_{4-4v} = W_{3-3v} + W_{III} = 0,146 \text{ cm}^3$ 

 $W_{\text{ш}}^{4-4y}$  момент сечения шайбы по сечению 4-4: 0,045 см<sup>3</sup>

М<sub>4-4</sub> - максимальный момент от ветра в пяте кронштейна по грани шайбы анкера:

 $M_{4-4} = (W_{-(+)} *S_{WH} *e2)/2 = 8,582 H*M$ 

S<sub>WH</sub> - площадь сбора ветровой нагрузки на несущий кронштейн: 0,295 м²

е2 - размер до шайбы анкера: 2 см

# Прочность несущего кронштейна на растяжение с изгибом и сдвиг (срез) обеспечивается

#### Определение усилий в анкерном элементе:

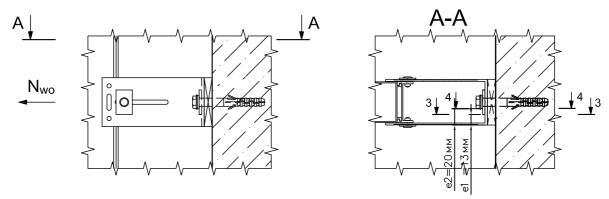
Момент в вертикальной плоскости:

M1 = P\*C = 109.69 H\*M

, где: С - плечо от вертикальной нагрузки на анкер: 209 мм

Определяем усилие вырыва анкера:

 $N_{aH} = N_{WH} + M1/B1 = 2322 H$ 


, где: В1 - плечо от момента вызваного вертикальной нагрузкой на анкер: 75 мм

Лист

<del>7.11</del> СИАЛ

#### Расчет опорного кронштейна

Опорные кронштейны воспринимают только продольные усилия от горизонтальной ветровой нагрузки; наиболее нагруженным является кронштейн на средней опоре.



Геометрические характеристики поперечного сечения несущего кронштейна, по сечению 2-2:

Высота кронштейна, h: 60 мм

Толщина стенки кронштейна, t: 3 мм

Усилие от горизонтальной нагрузки:  $N_{wo} = K_{HC}^* q_w^* b_{kp} = 1360 \text{ H}$ 

, где: К<sub>нс</sub> - коэффициент неразрезности среднее положение: 1,143

Проверка кронштейна по сечению 2-2:

$$\sigma_{2-2}$$
 = N<sub>wo</sub> / A<sub>2-2</sub> = 4 MПa ≤ 120 МПa

, где:  $A_{2-2}$  - площадь сечения кронштейна по сечению 2-2.

Проверка кронштейна по сечению 3-3:

Напряжение от изгиба в пяте кронштейна:

$$\sigma_{3-3} = M_{rop}^{\Pi 3-3} / W_{3-3v} = 120 \text{ M}\Pi a \le 120 \text{ M}\Pi a$$

 $\sigma_{3-3}=M_{rop}^{\Pi 3-3}/W_{3-3y}=120~M\Pi a\le 120~M\Pi a$ , где:  $W_{3-3y}$  - момент ослабленного сечения кронштейна:  $W_{3-3y}=b^*h2/6=0,07~cm^3$ 

b - высота пяты кронштейна за вычетом отверстия под анкер: 4,9 см

h - толщина пяты кронштейна: 0,3 см

 $\mathsf{M}^{\Pi 3\text{--}3}_{\mathsf{rop}}$  - максимальный момент от ветра в пяте кронштейна по грани шайбы:

 $M_{\text{rop}}^{\Pi\dot{3}\text{-}3} = (w_{+(-)}^* S_{WO}^* K_{HC}^* e1)/2 = 0,88 \text{ k} \Gamma^* M$ 

S<sub>WO</sub> - площадь сбора ветровой нагрузки на опорный кронштейн: 0,41 м²

е1 - размер до грани шайбы: 1,3 см

Проверка кронштейна по сечению 4-4:

Напряжение от изгиба в пяте кронштейна:

$$\sigma_{4-4} = M_{rop}^{\Pi 4-4}/W_{4-4v} = 115 MΠa ≤ 120 MΠa$$

 $\sigma_{4\text{--}4} = M_{\text{гор}}^{\Pi 4\text{--}4}/W_{4\text{--}4y} = 115 \ \text{М}\Pi a \le 120 \ \text{М}\Pi a$ , где:  $W_{4\text{--}4y}$  - максимальный момент от ветра в пяте кронштейна по грани шайбы

 $W_{4-4y} = W_{3-3y} + W_{III} = 0.12 \text{ cm}^3$ 

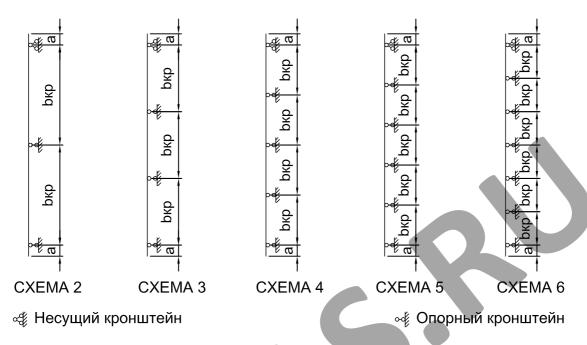
 $W_{\rm m}^{4.3}$  момент сечения шайбы по сечению 2-2: 0,045 см<sup>3</sup>

 $M_{rop}^{\Pi^{4-4}}$  - максимальный момент от ветра в пяте кронштейна по грани шайбы анкера:

 $M_{rop}^{\Pi 4-4} = (W_{+(-)}^* S_{WO}^* K_{HK}^* e2)/2 = 1,36 \text{ } \kappa r^* M$ 

S<sub>WO</sub> - площадь сбора ветровой нагрузки на опорный кронштейн: 0,41 м²

е2 - размер до грани шайбы анкера: 2 см


#### Прочность опорного кронштейна обеспечивается

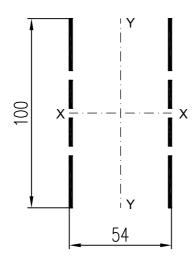
Определение усилия вырыва в анкерном элементе:  $N_{ah} = N_{wo} = 1360 \text{ H}$ Заключение: Согласно выполненого расчета крепление направляющей КП45480-1, в рядовой зоне, выполняется по следующей схеме: 1 несущий кронштейн и 4 опорных.

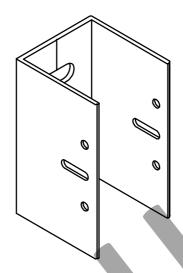
СИАЛ Навесная фасадная система Лист

Согласно найденным расчетным усилиям на вырыв 2322 Н в несущем кронштейне и 1360 Н в опорном подбирается анкер. Окончательное решение о применении анкера принимается по результатам натурных испытаний по методике приведенной в ТО на соответствующий анкер согласно СТО ФЦС-44416204-010-2010.

Приложение Расчетные схемы и формулы определения моментов и опорных реакций

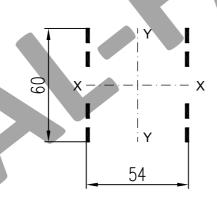


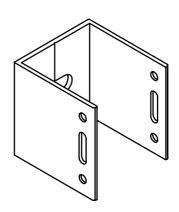

| Моменты             |                                                    | Расчетные схемы                                    |                                                   |                                       |                                                    |                                                    |  |  |  |
|---------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------|----------------------------------------------------|----------------------------------------------------|--|--|--|
| И                   | Nº1                                                | Nº2                                                | Nº3                                               | Nº4                                   | Nº5                                                | Nº6                                                |  |  |  |
| опорные             | однопролетная                                      | двухпролетная                                      | трехпролетная                                     | четырех-                              | пятипролетная                                      | шестипролетная                                     |  |  |  |
| реакции             | балка                                              | балка                                              | балка                                             | пролетная балка                       | балка                                              | балка                                              |  |  |  |
| М <sub>оп.тах</sub> |                                                    | 0,125*q <sub>w</sub> *b <sub>кp</sub> <sup>2</sup> |                                                   | $0,107*q_w*b_{\kappa p}^{2}$          | 0,105*q <sub>w</sub> *b <sub>кp</sub> <sup>2</sup> | $0,083*q_w*b_{\kappa p}^2$                         |  |  |  |
| M <sub>пр.max</sub> | 0,125*q <sub>w</sub> *b <sub>кp</sub> <sup>2</sup> | $0.07*q_w*b_{kp}^2$                                | 0,08*q <sub>w</sub> *b <sub>кp</sub> <sup>2</sup> | $0.077*q_w*b_{\kappa p}^2$            | 0,078*q <sub>w</sub> *b <sub>кp</sub> <sup>2</sup> | 0,042*q <sub>w</sub> *b <sub>кp</sub> <sup>2</sup> |  |  |  |
| N <sub>w max</sub>  | $0.5*q_w*b_{\kappa p}$                             | 0,125*q <sub>w</sub> *b <sub>κp</sub>              | $1,1*q_w*b_{\kappa p}$                            | 1,143*q <sub>w</sub> *b <sub>κp</sub> | 1,132*q <sub>w</sub> *b <sub>кр</sub>              | 1,0*q <sub>w</sub> *b <sub>κp</sub>                |  |  |  |
| N <sub>w край</sub> | 0,5*q <sub>w</sub> *b <sub>кр</sub>                | 0,375*q <sub>w</sub> *b <sub>κp</sub>              | 0,4*q <sub>w</sub> *b <sub>кр</sub>               | $0,394*q_w*b_{\kappa p}$              | 0,395*q <sub>w</sub> *b <sub>кр</sub>              | 1,0*q <sub>w</sub> *b <sub>κp</sub>                |  |  |  |




| Обозна-   | Эскиз                                                                                            | Macca, | Площадь,        | Моме<br>инер |            |            | енты<br>ивления |
|-----------|--------------------------------------------------------------------------------------------------|--------|-----------------|--------------|------------|------------|-----------------|
| чение     | элемента                                                                                         | кг/м   | CM <sup>2</sup> | Jx,<br>cm⁴   | Jy,<br>cm⁴ | Wx,<br>cm³ | Wy,<br>см³      |
| КП45480-1 | 375<br>75                                                                                        | 0,947  | 3,497           | 16,17        | 16,11      | 5,2        | 4,3             |
| КПС 010   | 2 0 X 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                        | 1,61   | 5,946           | 51,99        | 26,23      | 12,36      | 6,99            |
| КПС 163   | 25 14 25 50                                                                                      | 1,165  | 4,299           | 55,92        | 19,36      | 10,94      | 7,74            |
| КПС 245   | 2 2 0 × 705 75 75                                                                                | 1,881  | 6,947           | 102,23       | 31,99      | 18,71      | 8,53            |
| КПС 246   | 2<br>0 x<br>8<br>37.5<br>75                                                                      | 2,098  | 7,747           | 157,9        | 36,6       | 24,41      | 9,76            |
| КП451362  | 25<br>50                                                                                         | 1,221  | 4,51            | 26,92        | 18,47      | 7,93       | 7,39            |
| КПС 625   | 2<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V | 1,267  | 4,68            | 26,24        | 34,76      | 7,11       | 5,35            |
| КПС 707   | 88 0 X X X X X X X X X X X X X X X X X X                                                         | 1,394  | 5,15            | 25,93        | 34,98      | 7,23       | 6,36            |

| Лист |  |
|------|--|
| 8.1  |  |


Геометрические характеристики сечения кронштейна несущего КН-60-КПС 254



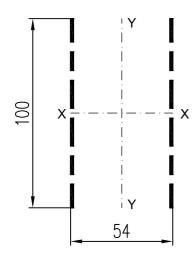


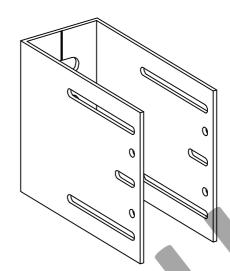

| Площадь,<br>см² | Мом<br>инер | енты<br>оции | Мом-<br>сопроти | -          | Радиу<br>ер |           |  |
|-----------------|-------------|--------------|-----------------|------------|-------------|-----------|--|
|                 | Jx,<br>cm⁴  | Ју,<br>см⁴   | Wx,             | Wy,<br>см³ | lx,<br>cm   | ly,<br>CM |  |
| 2,53            | 23,74       | 17,45        | 75              | 6 46       | 3 06        | 2,63      |  |

Геометрические харак ристики ч ния кронштейна опорного КО-60-КПС 254



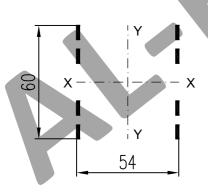



|                 | Моменты         |                 | Моменты         |                 | Радиус  |      |
|-----------------|-----------------|-----------------|-----------------|-----------------|---------|------|
| Площадь,        | инер            | оции            | сопротивления   |                 | инерции |      |
| CM <sup>2</sup> | Jx,             | Jy,             | Wx,             | Wy,             | lx,     | ly,  |
|                 | CM <sup>⁴</sup> | CM <sup>⁴</sup> | CM <sup>3</sup> | CM <sup>3</sup> | CM      | CM   |
| 0,89            | 3,94            | 6,12            | 1,31            | 2,27            | 2,1     | 2,62 |


СИАЛ Навесная фасадная система

Лист

8.2

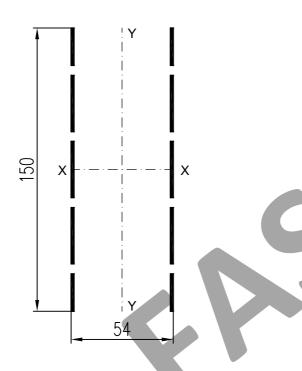

#### Геометрические характеристики сечения кронштейнов несущих КН

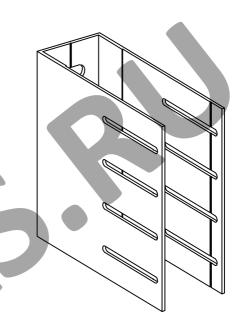





|                 | Мом             | енты            | Мом             | енты            | Рал               | INVC |
|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|------|
| Площадь,        |                 |                 | сопротивления   |                 | Радиус<br>инерции |      |
| CM <sup>2</sup> | Jx,             | Jy,             | Wx,             | Wy,             | lx,               | ly,  |
|                 | CM <sup>⁴</sup> | CM <sup>⁴</sup> | CM <sup>3</sup> | CM <sup>3</sup> | СМ                | СМ   |
| 2,22            | 19,91           | 15,3            | 3,98            | 5 7             | 3                 | 2,63 |

### Геометрические хар еристики с ения кронштейнов опорных КО



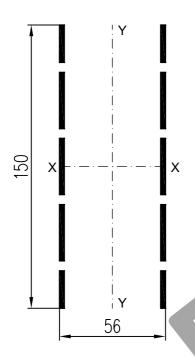

| Площадь,<br>см² | Моменты<br>инерции |            | Моменты<br>сопротивления |            | Радиус<br>инерции |           |
|-----------------|--------------------|------------|--------------------------|------------|-------------------|-----------|
|                 | Jx,<br>cm⁴         | Ју,<br>см⁴ | Wx,                      | Wy,<br>см³ | lx,<br>cm         | ly,<br>см |
| 0,89            | 3,94               | 6,12       | 1,31                     | 2,27       | 2,1               | 2,62      |

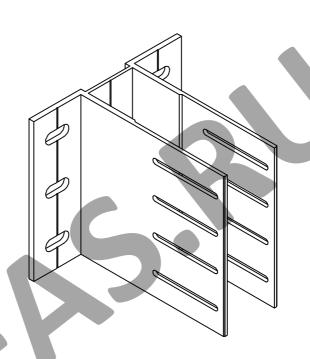
| J | 1 | NC. | Т |
|---|---|-----|---|
|   |   |     |   |

Геометрические характеристики сечения кронштейнов спаренных КС






| 4 |                 | Моменты<br>инерции |       | Моменты Моменты |                 | Радиус  |      |  |
|---|-----------------|--------------------|-------|-----------------|-----------------|---------|------|--|
| ı | Площадь,        |                    |       | сопроти         | вления          | инерции |      |  |
|   | CM <sup>2</sup> | Jx,                | Jy,   | Wx,             | Wy,             | lx,     | ly,  |  |
|   |                 | CM <sup>⁴</sup>    | CM⁴   | CM <sup>3</sup> | CM <sup>3</sup> | CM      | СМ   |  |
|   | 3,88            | 74,81              | 26,72 | 9,97            | 9,89            | 4,39    | 2,62 |  |


СИАЛ Навесная фасадная система

Лист

8.4

Геометрические характеристики сечения кронштейнов усиленных КУ





| Mo    |                 | енты            | Моменты<br>сопротивления |                 | Радиус<br>инерции |      |
|-------|-----------------|-----------------|--------------------------|-----------------|-------------------|------|
| Пл ад | инерции         |                 |                          |                 |                   |      |
| С     | Jx,             | Jy,             | Wx,                      | Wy,             | lx,               | ly,  |
|       | CM <sup>⁴</sup> | CM <sup>⁴</sup> | CM <sup>3</sup>          | CM <sup>3</sup> | СМ                | СМ   |
| 6,46  | 124,68          | 46,26           | 16,62                    | 16,52           | 4,39              | 2,68 |

Лист

8.5